Новости    Библиотека    Энциклопедия    Биографии    Ссылки    Карта сайта    О сайте


предыдущая главасодержаниеследующая глава

Что можно сказать о методах прямого преобразования энергии?

Под методом прямого преобразования энергии понимается такое производство электрической энергии из тепловой, при котором число промежуточных ступеней преобразования энергии сокращается или по крайней мере процесс получения электроэнергии из тепловой упрощается. Чаще всего (но не всегда (Так, в магнитогидродинамическом методе получения электрической энергии из тепловой, который обычно относят к методам прямого преобразования энергии и о котором речь пойдет ниже, ступень преобразования тепловой энергии в механическую сохраняется.)) исключается промежуточное превращение тепловой энергии в механическую.

В более широком смысле слова под методом прямого преобразования энергии понимается получение электрической энергии не только из тепловой, но и из химической (в топливных элементах) и из энергии электромагнитного излучения (в фотоэлектропреобразователях). Именно эти вопросы рассматриваются в этом разделе. В первую очередь мы познакомимся с магнитогидродинамическим методом, так как он, по-видимому, более других разработан для получения больших количеств электроэнергии, а именно это в соответствии с темой настоящей книжки нас интересует прежде всего.

Магнитогидродинамический метод (МГД-метод). Собственно магнитогидродинамический метод преобразования тепловой энергии в электрическую основан на использовании двух типов преобразователей: теплового двигателя, напоминающего газовую турбину, преобразующего теплоту в кинетическую энергию струи газа (продуктов сгорания), и необычную электродинамическую машину, преобразующую кинетическую энергию струи газа в электрическую.

Происходит это следующим образом (рис. 23). В результате сжигания органического топлива (допустим, природного газа) образуются газообразные продукты сгорания. Необходимо, чтобы их температура была не ниже 2500° С. При этой температуре газ становится электропроводным, переходит в плазменное состояние. Другими словами, происходит ионизация газа: от молекул газа отрываются электроны. Плазма при такой относительно низкой температуре (не меньше 2500° С) ионизирована лишь частично: она состоит не только из продуктов ионизации - электрически заряженных свободных электронов и ионов (имеющих положительный заряд частиц, образующихся в результате потери молекулой одного или нескольких электронов), но и еще не подвергшихся ионизации молекул.

Рис. 23. Схема МГД-электростанции открытого цикла
Рис. 23. Схема МГД-электростанции открытого цикла

Чем выше температура, тем больше ионизация газа и, следовательно, его электропроводность. При температуре порядка 10 тыс. градусов любой газ ионизируется полностью - н состоит только из свободных электронов и ядер атомов.

Плазма, с которой мы встречались, рассматривая термоядерные процессы, и температура которой измеряется многими миллионами градусов, называется высокотемпературной. Плазма же, используемая в МГД-генераторах и имеющая температуру, измеряемую тысячами градусов, именуется низкотемпературной.

И чтобы низкотемпературная плазма продуктов сгорания имела достаточную электропроводность уже при температуре около 2500° С, к ней необходимо добавить одно из легкоионизирующихся веществ, обычно щелочные металлы: натрий, калий или цезий. Пары этих веществ ионизируются при более низкой температуре.

Плазма с небольшой добавкой легкоионизирующегося вещества при температуре, скажем, 2600° С (рис. 23) поступает в канал МГД-генератора и за счет уменьшения ее тепловой энергии разгоняется там до скорости, близкой к звуковой или даже более высокой. Протекая по каналу, электропроводная плазма пересекает силовые линии специально созданного магнитного поля, имеющего большую индукцию. Если направление движения потока перпендикулярно силовым линиям магнитного поля, а электропроводность плазмы, скорость потока и индукция магнитного поля достаточно велики, то в соответствии с законами электродинамики в направлении, перпендикулярном и движению потока, и силовым линиям магнитного поля, от одной стенки канала к другой возникнет электрический ток, протекающий через плазму. Для этого, конечно, необходимо электроды, размещенные на противоположных стенках канала, замкнуть на внешнюю цепь.

Как видно из сказанного, принцип работы МГД-генератора не отличается от принципа работы обычного электромеханического генератора. В обоих случаях электрический проводник пересекает силовые линии магнитного поля, в результате чего в проводнике генерируется эдс. В электромеханическом генераторе проводником служит электропроводящий металл ротора, а в МГД-генераторе - поток электропроводящей плазмы.

Взаимодействие электрического тока, протекающего через плазму, с магнитным потоком создает силу, тормозящую движение плазмы по каналу. Таким путем кинетическая энергия потока плазмы превращается в электрическую энергию.

В чем же привлекательная сторона МГД-генератора?

Как нам уже хорошо известно, для увеличения КПД теплового двигателя необходимо повышать начальную температуру рабочего тела. Но в тепловых двигателях ТЭС - паровых турбинах - начальную температуру водяного пара не поднимают, как уже говорилось, выше 540° С. Это объясняется тем, что наиболее ответственные элементы турбины (особенно рабочие лопатки) испытывают одновременное воздействие высокой температуры и большой механической нагрузки. В канале МГД-генератора вообще нет движущихся частей, и поэтому материал, из которого сделаны наиболее ответственные элементы конструкции, не испытывает сколько-нибудь значительных механических усилий. В этом и состоит одно из самых важных преимуществ МГД-генератора.

Читатель может заметить, что не существует материала, способного выдержать температуру 2600° С. Не делает ли это идею МГД-генератора неосуществимой?

Действительно, такого материала не существует, высокотемпературные элементы конструкции приходится охлаждать (обычно водой). Но одно дело охлаждать неподвижные элементы конструкции, как в МГД-генераторе, и совсем другое дело - вращающиеся (да еще с очень большой скоростью), как в паровой турбине.

Следует заметить, что в МГД-генераторе в качестве рабочего тела может применяться не только газ (плазма), но и жидкие металлы. В настоящее время большое внимание привлекают плазменные МГД-генераторы. Они могут быть открытого и замкнутого типа. Мы ведем речь о плазменной МГД-установке открытого типа.

На выходе из канала МГД-генератора продукты сгорания (плазма) все еще имеют высокую температуру, обычно около 2000° С. При более низкой температуре плазма делается недостаточно электропроводной и поэтому продолжение процесса в МГД-генераторе невыгодно.

В то же время продукты сгорания на выходе из канала МГД-генератора обладают еще, как сказано, высокой температурой (более высокой, чем в топке обычного котла), и их тепловую энергию, конечно, надо использовать. Проще всего решить эту задачу, сделав установку двухступенчатой (см. рис. 23).

Итак, в камеру сгорания подается топливо, легкоионизирующаяся присадка и нагретый окислитель (например, обогащенный кислородом воздух). Продукты сгорания, имеющие температуру около 2600° С, поступают через сопло в канал МГД-генератора (Канал на рисунке изображен схематично. Не показаны создающая магнитное поле магнитная система, токоотводящая система, охлаждение стенок канала.), а из канала (при температуре около 2000° С) - в парогенератор. Здесь за счет тепла, отдаваемого уходящими газами, происходит нагревание воды, образование и перегрев водяного пара. В парогенераторе или в отдельном воздухонагревателе производится подогрев направляемого в камеру сгорания окислителя. Из парогенератора отводится (и затем используется вновь) легкоионизирующаяся присадка. Показанная на рис. 23 паросиловая часть схемы в принципе не отличается от изображенной на рис. 2 и 11 (схемы ТЭС и АЭС).

Главное преимущество МГД-электростанции в том, что она позволяет получать высокий КПД, который, по-видимому, достигнет 50-60 (Столь широкая вилка значения КПД МГД электростанции объясняется главным образом возможностью использования различных технических решений и достигнутой температурой подогрева окислителя (от 1500 до 2000° С). )против 40% для лучших ТЭС. Большинство существующих и строящихся в настоящее время опытных и опытно-промышленных МГД-установок рассчитано для работы на газовом топливе. Однако в дальнейшем более перспективно применение угля.

Другим важным преимуществом МГД-электростанций является их высокая маневренность, создаваемая возможностью полного выключения МГД-ступени.

Представленная на рис. 23 схема МГД-электростанции называется открытой потому, что рабочим телом МГД-генератора являются продукты сгорания, которые после прохождения канала и парогенератора выбрасываются в атмосферу.

В работе по созданию мощных МГД-генераторов приходится сталкиваться со сложными научно-техническими вопросами. К их числу относится проблема материалов для МГД-каналов, в первую очередь для их горячих стенок и электродов. Конечно, можно было бы с помощью интенсивного охлаждения снизить температуру стенок и электродов до вполне приемлемой, допускающей длительную эксплуатацию, но это привело бы к большой потере тепла и к снижению КПД МГД-генератора, а также к снижению температуры пристенных и приэлектродных слоев плазмы, уменьшению их электропроводности и в итоге к ухудшению работы генератора. Задача заключается в том, чтобы создать такие материалы для горячих стенок и электродов, которые могли бы работать длительно и надежно при возможно более высокой температуре. Большие надежды возлагаются на двуокись циркония в качестве материала для электродов и на окислы металлов, в частности окись магния, для горячих стенок.

Нелегкое дело создать магнитную систему, особенно при условии, что индукцию желательно иметь 5 - 6 тесла (50 - 60 тыс. гаусс), а длина канала должна быть около 20 м. Считается, что наиболее перспективной является сверхпроводящая магнитная система, охлаждаемая жидким гелием.

Есть и другие сложные, требующие решения вопросы. К их числу относится: создание эффективного электрического инвертора для преобразования постоянного тока в переменной (в МГД-генераторе получается постоянный ток), устройства для вывода легкоионизирующейся присадки, создание имеющего особенности парогенератора и некоторые другие.

Несмотря на все трудности, в Советском Союзе работы в области МГД-преобразования энергии продвинуты настолько, что в настоящее время идет работа по созданию промышленной МГД-установки мощностью около 500 МВт.

Можно предполагать, что в перспективе мощные МГД-установки будут использоваться на АЭС. Тогда место камеры сгорания займет атомный реактор, а рабочим телом МГД-генератора будут уже, конечно, не продукты сгорания, а более легкоионизирующийся газ, например гелий. Так как гелий, естественно, будет циркулировать по замкнутому контуру (схема МГД-элек-тростанции называется закрытой), то в качестве легкоионизирующейся присадки может быть использован более дорогой, но зато более существенно увеличивающий электропроводность плазмы металл цезий. С учетом всего сказанного необходимая максимальная температура гелий-цезиевой плазмы может быть ниже - порядка 1500° С (а не 2600° С, как для рассмотренной открытой схемы).

Следовательно, в атомном реакторе гелий должен быть нагрет не менее чем до 1500° С. В настоящее время таких высокотемпературных атомных реакторов не существует. Но можно надеяться, что их создание - вопрос времени.

* * *

Из других способов прямого преобразования энергии большой интерес представляет применение фото-электропреобразователей (о них уже говорилось в разделе «Солнечная энергия»), термоэлектрогенераторов, термоэмиссионных преобразователей и топливных элементов. Однако перспектива использования этих методов и устройств в большой энергетике пока еще до конца не ясна. Поэтому мы остановимся на них кратко.

Термоэлектрогенераторы (ТЭГ). Работа термоэлектрического генератора основана на хорошо известном в физике эффекте Зеебека. Он состоит в том, что в электрической цепи, состоящей из различных элементов, при условии, что контакты (спаи) между ними имеют различную температуру, возникает электродвижущая сила.

На рис. 24 представлена такая электрическая цепь, состоящая из двух проводников - меди и константана (сплава меди и никеля), используемая для измерения температуры. Один из спаев находится при температуре, которую требуется измерить (tn), а другой при постоянной температуре (t0), например при практически неизменной температуре смеси воды и льда. По величине электродвижущей силы, измеряемой гальванометром, можно с высокой степенью точности определить tn.

Если составить электрическую цепь из последовательно соединенных различных материалов (обычно полупроводников), иначе говоря, цепь из отдельных термоэлементов, то получится термоэлектрический генератор. Создаваемая им электродвижущая сила будет пропорциональна числу термоэлементов.

Таким образом, термоэлемент, так же как и МГД-генератор, преобразует в электрическую энергию тепловую энергию. Следовательно, КПД термоэлемента регламентируется вторым законом термодинамики.

К сожалению, термоэлектрические генераторы пока еще дороги, а их КПД невелик. Поэтому они находят применение в качестве небольших, как правило, автономных, источников энергии.

Термоэмиссионные преобразователи (ТЭП). Если какое-либо твердое тело (металл, полупроводник) поместить в вакуум, то известное количество электронов этого тела перейдет в вакуум (Описываемое явление наблюдается и у жидкостей). Это явление называется термоэлектронной эмиссией, а твердое тело, испускающее электроны, - эмиттером. Эмиссия электронов тем больше, чем выше температура эмиттера. В процессе эмиссии электронов эмиттер охлаждается. Через некоторое время после начала электронной эмиссии (после помещения тела в вакуум) установится равновесие: сколько электронов в единицу времени будет выходить из твердого тела за счет электронной эмиссии, столько же в него будет возвращаться в результате так называемой конденсации электронов. Охлаждения твердого тела в состоянии равновесия более не происходит.

Но можно поступить иначе: поместить в вакуум два тела (два электрода), причем к одному из них (электроду-эмиттеру) подводить тепло и поддерживать его при более высокой температуре, а от второго (электрода-коллектора) тепло отводить, с тем чтобы его температура оставалась более низкой.

Рис. 24. Термоэлемент
Рис. 24. Термоэлемент

Если теперь эмиттер и коллектор замкнуть внешней электрической цепью, то по ней потечет ток; описанное устройство станет источником тока, термоэмиссионным преобразователем (ТЭП). Из сказанного следует, что ТЭП (так же, как и ТЭГ) преобразует тепловую энергию в электрическую (минуя ступень механической энергии) и, следовательно, подчиняется ограничениям, установленным вторым законом термодинамики.

Если, используя ТЭП, можно было бы получать большие количества электроэнергии, а его основные технико-экономические показатели (стоимость и КПД) были благоприятны, то энергетика получила бы «в лице» ТЭП хороший электрический генератор, работающий по принципу прямого преобразования энергии.

В настоящее время еще не достигнуты такие технико-экономические показатели ТЭП, которые могли бы удовлетворить энергетику. Поэтому ТЭП пока что используются, как и ТЭГ, в случаях, когда требуются относительно малые мощности. Однако работа по улучшению показателей ТЭП ведется высокими темпами.

Топливные элементы. В топливном элементе осуществляется прямое преобразование химической энергии в электрическую. В чем заключается принцип работы и каково устройство топливного элемента?

Можно, например, сжечь водород в атмосфере кислорода. В результате образуется вода и выделяется тепло, которое затем можно использовать в теплосиловом двигателе. А можно пойти другим путем, как это и делается в топливном элементе, разделив реакцию горения водорода на два процесса, в одном из которых участвует водород, а в другом - кислород.

Схема топливного элемента представлена на рис. 25. Он состоит из двух электродов, на один из которых подается водород, а на другой - кислород, и электролита. Существенным отличием топливного элемента от электрического аккумулятора и его преимуществом является то, что запас горючего и окислителя в топливном элементе, в данном случае водорода и кислорода, непрерывно пополняется.

Водород, попадая на металлический электрод и находясь на разделе трех фаз - твердого электрода, электролита и газовой фазы, - переходит в атомарное состояние (его двухатомная молекула разделяется на атомы), а атомы делятся на свободные электроны и ядра атомов (ионы). Электроны уходят в металл, а ядра атомов- в раствор (электролит). Вследствие этого электрод насыщается отрицательно заряженными электронами, а электролит - положительно заряженными ионами.

Аналогичный процесс происходит на втором электроде, на который подается кислород. В результате проходящих у поверхности электрода процессов на нем появляются положительные электрические заряды. Кроме того, возникают отрицательные заряженные ионы ОН, которые остаются в электролите и, соединяясь с ионами водорода, образуют воду.

Если соединить внешней цепью оба электрода, то возникнет электрический ток (рис. 25). Таким путем химическая энергия превращается в электрическую. Поскольку в топливном элементе отсутствует промежуточная стадия преобразования химической энергии в тепловую, его КПД не имеет ограничений, присущих тепловому двигателю. Водород-кислородный элемент работает при низкой температуре, а его КПД вполне может достигать 65 - 70%.

Рис. 25. Схема топливного элемента
Рис. 25. Схема топливного элемента

Не следует, однако, думать, что создать топливный элемент просто и легко. Обычно все относительно просто, пока речь идет о схеме, но как только переходишь к ее реализации, появляется масса трудностей. Не случайно поэтому, что идея топливного элемента появилась в середине XIX в., а подходящей конструкции для широкого применения нет и по сей день.

В проблеме топливного элемента много трудностей: проведение всех процессов с большой скоростью (залог получения больших абсолютных и удельных мощностей); выбор материала и создание высококачественных электродов; создание высокоэффективных электролитов (жидких и твердых в зависимости от типа топливного элемента); возможность работы на дешевом топливе.

предыдущая главасодержаниеследующая глава

moidomiks.ru










© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2001-2019
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://physiclib.ru/ 'Библиотека по физике'

Рейтинг@Mail.ru
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь