В лице Эрнеста Резерфорда мировая наука потеряла самого крупного и смелого физика-экспериментатора наших дней. Я не сомневаюсь, что его имя в истории физики станет наравне с именем Фарадея.
Резерфорд, как и Фарадей,- в основном экспериментатор, наделенный исключительной интуицией. Она вела его к тем экспериментам, посредством которых он находил в самых трудных и основных проблемах науки простые и ясные решения. В физике, как и во всякой науке, существует ряд основных проблем, решение которых обозначает как бы вехами тот путь, по которому развивается научная мысль. Мало кому из ученых удается поставить больше одной такой вехи. Резерфорд, как и Фарадей, поставил их несколько.
В 1903 г., одиноко работая в маленьком провинциальном университете Монреаля (в Канаде), он доказал, что радиоактивность есть спонтанный распад элемента радия, открытого супругами Кюри. Он доказал это блестяще и неопровержимо убедительно, получив из радия эманацию и гелий. Смелая идея, руководившая его работой, шла вразрез с установившимся уже много десятилетий понятием о постоянстве атома. Эта работа подвела совсем новый фундамент под наши взгляды на материю и лежит теперь в основе наших космологических воззрений.
В 1911 г. Резерфорд создает модель атома. Экспериментально он показывает, что атом всякого вещества как бы подобен Солнечной системе. В центре положительно заряженное весомое ядро окружено отрицательными электронами. Эта модель в 1913 г. легла в основу Розданной Нильсом Бором теории атома и спектров. Теперь эти взгляды являются ведущими как в физике, так и в химии.
В 1919 г. Резерфорд экспериментально доказал возможность искусственного разложения материи. Он разложил ядро элемента азота и, таким образом, указал путь и положил основание современной физике ядра.
Для всех, близко его знавших, его смерть была полной неожиданностью. Он все время энергично руководил своими учениками в Кавендишской лаборатории, где он создал самую крупную школу физиков Англии. Его творческая мысль неистощимо работала, и он принимал живое участие в совместной работе ученых всех стран.
Резерфорд был не только гениальным ученым, но и большим учителем. Он оставляет после себя значительное количество учеников, рассеянных по всему свету.
Работы Резерфорда получили мировое признание. Еще в 1908 г. он получил Нобелевскую премию, имел все научные международные отличия. Он был почетным членом всех академий мира, в том числе и нашей всесоюзной..
Научная деятельность Резерфорда
Из доклада, прочитанного в Университете физико-химии им. Н. Д. Зелинского
1937
Эрнест Резерфорд, известный всему миру как величайший ученый наших дней, родился в 1871 г. в деревне Брайтуотер, около городка Нельсон в Новой Зеландии. Ученый, имевший все международные отличия, какие только может иметь человек науки, Резерфорд начал свою жизнь очень скромно. Он был четвертым ребенком мелкого фермера, у которого после него было еще восемь детей. Его отцу, культивировавшему лен, было не под силу дать образование 12 детям, и Резерфорд, начиная с детского возраста и до получения высшего образования, все время учился на стипендии.
Это был очень живой, активный, веселый ребенок, любивший охоту, спорт. В школе и в университете он играл форвардом в футбольной команде. Но также он любил читать, мастерить модели, разбирать механизмы. Еще мальчиком он сделал себе фотографический аппарат, что по тем временам было довольно трудно. Окончив школу в 1890 г., он поступает в университет Кентербери-колледж в г. Крайстчерч. Это маленький провинциальный университет, там было всего 150 студентов и семь профессоров. С первого дня он увлекается наукой и начинает исследовательскую работу.
В студенческие годы Резерфорд очень заинтересовался радиоволнами, открытыми Герцем. Его увлекла идея беспроволочного телеграфа, но вопрос тогда упирался в то, чтобы найти детектор для электрических колебаний, возбужденных приходящими волнами. Резерфорд обнаружил, что высокочастотные колебания размагничивают железо. Практически это очень легко обнаружить, если рядом с намагниченным пучком железных проволок, помещенным в колебательный контур, поставим магнитную иглу. Тогда игла заметно отклонится при приеме радиоволн. Это открытие он опубликовал, и в маленьком университете это произвело впечатление и сразу создало Резерфорду репутацию.
В 1891 г. студенты организовали маленькое научное общество, в котором Резерфорд еще совсем молодым человеком делает доклад "Об эволюции материи". В этой работе он высказал для того времени совершенно революционные мысли: он утверждал тогда, что все атомы состоят из одних и тех же составных частей. Этот доклад был встречен очень неодобрительно, и ему пришлось извиниться перед обществом.
Надо сказать, что тогда, в 1891 г., у Резерфорда не было никаких данных для такого утверждения. Радиоактивность была открыта лишь в 1896 г., и со времени Дальтона атом рассматривался как нечто незыблемое. Но смелость Резерфорда, высказавшего такую мысль, правильность которой он экспериментально доказал через 12 лет, очень показательна.
В 1894 г. он кончает университет и, получив так называемую стипендию 1851 года, уезжает в Англию - в Кембридж. "Стипендия 1851 года"-это самая крупная стипендия, которую можно получить в Англии молодому ученому, и она полностью обеспечила научную работу Резерфорда на 2-3 года.
1895 год был годом реформ в Кембриджском университете. До этого года в исследовательских лабораториях Кембриджа не могли работать студенты, окончившие другие университеты. Но по инициативе Дж. Дж. Томсона было решено этот порядок изменить и дать возможность студентам, окончившим другие университеты, продолжать научную работу в кембриджских лабораториях.
Резерфорд был одним из первых молодых ученых, которые воспользовались этим изменением. Он записался в Кавендишскую лабораторию, руководимую Дж. Дж. Томсоном. Вместе с ним туда также поступили Мак-Леннан, Таунсенд и Ланжевен. Резерфорд в продолжение своего пребывания в Кавендишской лаборатории работал в одной комнате с Ланжевеном и очень с ним подружился. Дружба двух ученых, начавших вместе свою научную деятельность, была самой тесной и неразрывной до самой смерти Резерфорда.
В Кембридже Резерфорд начал с того, что продолжал свои работы по радиопередаче. Он устанавливает радиосвязь между лабораторией и обсерваторией, т. е. на расстоянии больше двух километров. Он первый в те времена передавал радиосигналы на такое большое расстояние. Надо думать, что, продолжай он эти работы, он ушел бы очень далеко, но его не привлекало практическое решение этого вопроса. В то время его начинает интересовать другой вопрос - об ионизации газов рентгеновскими лучами, природа которых в то время еще не была известна. Он начал работать вместе с Дж. Дж. Томсоном; ими было установлено такое явление, как ток насыщения при ионизации. Эту работу, опубликованную в 1896 г., можно считать основной по этому вопросу.
Как раз во время этой работы, в 1896 г., Беккерель открыл радиоактивность. Резерфорд увлекся этим явлением и стал его изучать. Он первый показал, что радий испускает два рода лучей (он назвал их а-лучи и b-лучи), которые разнятся по своей способности проникать через материю. Он показал, что эти лучи отличаются от обычного лучеиспускания.
В 1897 г. Резерфорд - уже молодой ученый с известной репутацией. В том же году он получает приглашение занять кафедру физики в университете города Монреаля в Канаде, уезжает туда и в продолжение 10 лет (с 1897 по 1907 г.) работает в Канаде. Эти годы, проведенные в маленьком провинциальном университете, были годами его плодотворнейшей работы. Мне кажется, это особенно поучительно для молодых ученых. Часто приходится слышать от молодых, начинающих ученых жалобы на то, что они не могут работать потому, что нет подходящих условий, нет подходящей лаборатории, нет того, нет другого. А теперь представьте себе молодого ученого, попадающего на другой конец света от своей родины, совершенно изолированного от всего научного мира, куда в те времена и журналы приходили с опозданием больше месяца. Но этот человек полон идей, полон энтузиазма и в этом далеком уголке мира он создает самые передовые, самые революционные, самые ведущие взгляды в науке того времени. Он привлекает этим молодых ученых всего мира, и к нему начинают уже съезжаться ученики.
Работа Резерфорда в Канаде ознаменовалась целым рядом крупнейших открытий. Им была открыта эманация тория. Вместе с Резерфордом там же работал в то время молодой химик Содди, и с ним Резерфорд начал изучать химический характер элементов, получаемых при радиоактивном распаде, так как было очень важно установить наряду с физическими и химические особенности радиоактивного процесса. В то время радиоактивность еще не была понята, и Резерфорд вместе с Содди были первыми, кто доказал, что это есть спонтанный переход одних элементов в другие, называемый теперь радиоактивным распадом. При этом испускаются либо а-лучи, состоящие из быстро летящих атомов гелия с положительным зарядом, либо р-лучи - быстро летящие электроны. На основании этого Резерфорд предполагал, что эманация тория есть элемент, отличный от самого тория. Вместе с Содди он по диффузии определил атомный вес эманации и показал, что она соответствует благородному газу.
Теория радиоактивного распада, выдвинутая Резерфордом и Содди в 1903 г., произвела революцию. Когда Резерфорд говорил об эволюции материи еще студентом в 1891 г., в студенческом кружке, он не имел на это никаких оснований, но теперь, когда он это доказал на основе чисто опытных данных, это произвело колоссальное впечатление не только в узком кругу его университета, но и на ученых всего мира. Но все же этот взгляд был тогда настолько революционен, что многие, даже очень крупные, ученые его не разделяли. Кельвин так и умер, не согласившись с тем, что радиоактивность есть распад атомов элементов, которые он считал незыблемой основой строения материи.
В этом же году, 32 лет, Резерфорд был выбран в Королевское общество (научное общество, эквивалентное нашей Академии наук). Но это не исключительный случай в английской академии. Там обычно ученого выбирают сразу же после того, как он достиг крупного успеха в научной работе, и потому нередки случаи избрания молодых ученых 25-28 лет. В этом большая сила английской академии, делающая ее активным научным центром, и этим она выгодно отличается от академий других стран.
В 1907 г. освобождается кафедра физики в Манчестере- в одном из крупных университетов Англии. В XIX в. эту кафедру занимали такие ученые, как Дальтон, Джоуль и др. Резерфорд переезжает туда. И в период с 1907 по 1919 г., находясь в Манчестере, он делает целый ряд не менее крупных работ, чем в Монреале. Из его работ этого периода надо отметить работу по рассеянию α-частиц при прохождении через вещество. Она привела к тому, что Резерфорд установил новую модель атома, принятую до сих пор.
В 1908 г. за свои работы он получает Нобелевскую премию по химии. В 1919 г. он открывает искусственную дезинтеграцию вещества и показывает, что в природе существует не только спонтанный распад радиоактивных элементов, но можно вызвать и искусственное разложение ядра под влиянием бомбардировки α-лучами. Это было открыто на азоте, а потом проверено на ряде других легких элементов. Таким образом, он создает совершенно новую область ядерной физики - искусственный распад атома.
Так же, как и в Канаде, в Манчестере он привлекает к себе целую плеяду молодых ученых. С ним работают не только англичане, но и немец Гейгер, датчанин Бор и другие, и в его лаборатории его учениками делается ряд выдающихся работ.
В 1919 г. Резерфорд получает кафедру в Кембридже, едет туда и весь остаток своей жизни проводит в Кембридже директором Кавендишской лаборатории, оставленной Дж. Дж. Томсоном, который ушел в отставку. Здесь он продолжает работу по искусственному разложению элементов. Он руководит работами своих учеников, и в его лаборатории делаются два из самых крупных открытий ядерной физики за последнее десятилетие - открытие нейтрона Чадвиком и работа Кокрофта и Уолтона по искусственному разложению вещества под влиянием бомбардировки пучком протонов, ускоренных искусственным путем.
Мы видим, что, начав свои экспериментальные работы по радиоактивности в 1896 г., Резерфорд затем их неуклонно развивает, и к концу его жизни эта область знания принимает такие размеры, что представляется нам уже в виде отдельной науки - ядерной физики.
Для того чтобы понять значение каждого открытия резерфорда, надо представить себе тот исторический фон, на котором они происходили. Эта задача чересчур широкая для такого доклада, как мой. Но очень поучительно на отдельных примерах проследить те методы, которыми Резерфорд вел свою научную работу и которыми он достигал таких крупных результатов.
Резерфорд был экспериментатором и в этом отношении напоминает Фарадея. Он мало пользовался формулами и мало прибегал к математике. Иной раз, пытаясь вывести при своих докладах формулу, он путался и тогда просто писал результат, замечая:
- Если все вывести правильно, то так и получится.
Но экспериментом он владел исключительно. Можно сказать, что он "видел" явление, над которым работал, хотя бы оно и происходило в неизмеримо малом ядре атома.
Если говорить очень схематично, то среди физиков существуют как бы два типа исследователей. Один - это тип скорее немецкой школы, когда экспериментатор исходит из известных теоретических предположений и старается их проверить на опыте. Другой же тип ученого, скорее английской школы, исходит не из теории, а из самого явления - изучает его и смотрит, может ли это явление быть объяснено существующими теориями. Тут изучение явления, его анализ являются основным мотивом для экспериментатора. И если такое деление возможно, Резерфорд был ярким представителем этого второго направления в экспериментальной физике. Главное для Резерфорда было - разобраться, понять явление. Эксперимент должен быть так построен, чтобы было ясно, в чем состоит явление. Для этого точность и сложность измерений должны быть как раз таковы, чтобы можно было разобраться и понять явление.
Как пример я приведу случай с изучением α-частиц. Радий испускает α-частицы. Резерфорд показал в самом начале своих опытов, что они не являются обычным лучеиспусканием. Но что же все-таки они собой представляют?
Научная деятельность Резерфорда
Резерфорд решил, что, если они вылетают из радия, они должны быть каким-то уже существующим элементом. Для того чтобы узнать - каким, надо только определить массу, а массу нужно определить лишь настолько точно, чтобы увидеть, какому из существующих элементов она соответствует.
Резерфорд ставит эксперимент, который очень характерен для него. Опишу этот эксперимент, хотя он имеет только историческое значение, так как теперь для определения массы α-частиц пользуются более точными и сложными методами. Но первоначальный метод Резерфорда поражает своей простотой и тем, как прямо он вел к цели.
На рисунке изображен прибор для этих опытов. Простой электроскоп 1, сделанный из листков золотой фольги, помещен над 20 параллельно поставленными металлическими пластинками 2. Зазор между пластинками только 1 мм, чтобы α-лучи, испускаемые радиоактивной солью 3 (положенной на дне), проходили в камеру электроскопа параллельным пучком. Чтобы удалять эманацию и увеличивать пробег α-лучей, через прибор пропускался водород.
Прикладывая сильное магнитное поле, направленное параллельно плоскостям пластинок 2, можно было почти полностью прекратить ионизацию в камере электроскопа. Таким простым способом Резерфорд показал, что α-лучи представляют собой быстро двигающиеся заряженные частицы. Прикрывая со стороны электроскопа половину зазоров между пластинками, можно было показать, что при одном направлении магнитного поля ионизация прекращается при меньших силах поля, чем при другом направлении. Так было установлено направление отклонения α-лучей магнитным полем и отсюда выведено, что знак заряда α-частиц положителен. Создавая между пластинками 2 электрическое поле, поочередно присоединяя их к противоположным полюсам батареи, Резерфорду удалось получить прекращение ионизации и отклонение α-лучей электрическим полем. Из этих данных он определил скорость α-частиц и показал также, что они представляют поток положительно заряженных атомов с большей массой, чем атомы водорода, и с точностью до 10% определил отношение их заряда к массе. Это отношение указывало на то, что α-частицы, по-видимому, соответствуют атомам гелия, дважды ионизованным.
Но надо было точнее доказать, что это действительно гелий. Эта работа была предпринята позднее, в 1909 г., уже в Манчестере, когда он располагал большими запасами радия.
Прибор для этих опытов был тоже чрезвычайно прост. Он изображен на рисунке
Научная деятельность Резерфорда
. В маленькую стеклянную тонкостенную трубочку 1 помещалась эманация радия. Толщина стенок этой трубки была всего лишь 0,01 мм, и быстрые α-частицы могли проходить через стекло, в то время как эманация была изолирована. Эта трубка помещалась в стеклянный сосуд 2, оканчивающийся капиллярной разрядной трубочкой с электродами 5 и 4. Посредством поднятия и опускания ртути в сосуде 2 в пространстве, окружающем трубочку 1, создавался вакуум. Трубочка с эманацией оставалась в приборе в продолжение двух дней, а потом газ, образованный проходящими α-частицами, сжимался поднятием ртути в разрядную трубку. При свечении газа в трубке были видны желтые гелиевые линии, которые доказывали присутствие гелия. Что этот гелий не продиффундировал из трубочки с эманацией, легко показывалось контрольным опытом, при котором эта трубка наполнялась гелием. Тогда гелиевые линии не появлялись в спектре. Так было показано, что α-лучи есть атомы гелия.
Эти два описанных мной опыта исключительно просты, их свободно может сделать любой студент. Но в то же время эти опыты, так правильно поставленные, так прямо ведущие к цели, решали в тот период вопрос первостепенной важности и произвели революцию во взглядах на материю.
Резерфорда не удовлетворяло изучение пучка α-лучей по наблюдению производимой ими ионизации, и он искал метод, каким он мог бы обнаружить отдельные α-частицы. Первое найденное им решение основывалось на методе сцинтилляций.
Еще Крукс заметил, что под влиянием бомбардировки положительными лучами некоторые вещества светятся - люминесцируют. Наиболее ярко светящимся веществом оказалась цинковая обманка. Когда Резерфорд вместе с Гейгером поместили цинковую обманку под микроскоп и направили на нее пучок α-лучей, то вместо того, чтобы видеть в поле зрения микроскопа ровный светящийся фон, они увидели отдельные вспыхивающие точки. Они заключили, что вспышки происходят в тех местах, где α-частицы ударяют о цинковую обманку. Так можно было определить число испускаемых α-частиц по счету вспышек, возникающих в цинковой Обманке.
Другой способ обнаружения α-частиц, открытый Резерфордом, благодаря изобретению усилительных ламп стал теперь еще более могущественным, чем счет сцинтилляций,- это метод счетчика. Этот метод основан на явлении, открытом Таунсендом. Если в газе при пониженном давлении находится острие, то можно подобрать такой потенциал, при котором еще не возникает разряд. Если теперь в окружающем газе произвести даже самую слабую ионизацию хотя бы одной α-частицей, то разряд сразу возникнет на некоторый промежуток времени. В 1908 г. Резерфорд и Гейгер построили первый счетчик, работающий на этом принципе. Он изображен на рисунке. Вместо острия они взяли тонкую проволочку 1, помещенную в цилиндрический сосуд 2. Между проволочкой и цилиндром создавался критический потенциал. Через отверстие 3, закрытое очень тонким слюдяным листком, могут проникать α-лучи, источник которых находится в сосуде 4. Разрядные токи от проволочки регистрируются струнным гальванометром, по отбросам которого можно считать α-частицы. Теперь в счетчике, изобретенном Резерфордом и Гейгером, струнный гальванометр заменяется ламповым усилителем, что делает счетчик чрезвычайно чувствительным. В современном своем виде он является одним из основных приборов, посредством которых только и стало возможным полное изучение космической радиации.
Имея возможность считать α-частицы, Резерфорд стал изучать целый ряд явлений, которые прежде не поддавались исследованию.
В 1910 г. к нему в лабораторию приехал работать молодой ученый по имени Марсден. Он попросил Резерфорда дать ему какую-нибудь очень простую задачу. Резерфорд поручил ему считать α-частицы, проходящие через вещество, и найти их рассеяние. При этом Резерфорд заметил, что, по его мнению, Марсден ничего особенного не обнаружит. Свои соображения Резерфорд основывал на принятой в то время модели атома Дж. Дж. Томсона. В соответствии с этой моделью атом представлялся сферой размером 10-8 см с равнораспределенным положительным зарядом, в которую были вкраплены электроны. Гармонические колебания последних определяли спектры лучеиспускания. Нетрудно показать, что α-частицы должны были легко проходить через такую сферу, и особенного рассеяния их нельзя было ожидать. Всю энергию на своем пути α-частицы тратят на то, чтобы выбивать электроны, т. е. ионизовать окружающие атомы.
Научная деятельность Резерфорда
Марсден под руководством Гейгера стал делать свои наблюдения и скоро заметил, что большинство α-частиц проходит через вещество, но все же существует заметное рассеяние, а некоторые частицы как бы отскакивают назад. Когда это узнал Резерфорд, он сказал: "Это невозможно. Это так же невозможно, как для пули невозможно отскочить от бумаги".
Эта фраза показывает, как конкретно и образно он видел явление.
Марсден и Гейгер опубликовали свою работу, а Резерфорд сразу решил, что существующее представление об атоме неправильно и его надо в корне пересмотреть.
Изучая закон распределения отразившихся α-частиц, Резерфорд постарался определить, какое распределение поля внутри атома необходимо, чтобы объяснить закон рассеяния, при котором α-частицы могли бы даже возвращаться обратно. Он пришел к выводу, что это возможно тогда, когда весь заряд сосредоточен в центре, а не распределен по всему объему атома. Размер этого центра, названного им ядром, очень мал: 10-12-10-13 см в диаметре. Но куда же тогда поместить электроны? Резерфорд решил, что отрицательно заряженные электроны надо распределить кругом - они могут удерживаться благодаря вращению, центробежная сила которого уравновешивает силу притяжения положительного заряда ядра. Следовательно, модель атома есть не что иное, как некая солнечная система, состоящая из ядра - солнца и электронов - планет. Так он создал свою модель атома.
Эта модель встретила полное недоумение, так как она противоречила некоторым тогдашним, казавшимся незыблемыми, основам физики. Резерфорд, конечно, понимал, что на основе максвелловской теории электроны, вращаясь вокруг центра, неминуемо должны испускать свет, терять свою кинетическую энергию и рано или поздно упасть на ядро. Идти вразрез с основами максвелловской теории в то время было чрезвычайно трудно. Поэтому модель атома Резерфорда вначале не была признана.
Так продолжалось два года. В это время к Резерфорду приехал работать молодой датский ученый Нильс Бор. Они часто обсуждали эту модель атома. Для Бора также было ясно, что принципы строения этой модели не находятся в соответствии с теми законами, которые было принято тогда считать основными. И Бор начал работать над этим парадоксом. Он верил в экспериментальную обоснованность модели Резерфорда, но надо было найти ей теоретическое обоснование. Ему пришла гениальная мысль применить для этого обоснования только тогда появившиеся идеи квантовой теории излучения. Они были выдвинуты сперва Планком и значительно обобщены Эйнштейном.
В 1913 г. Бор дает обоснование модели атома Резерфорда, которая теперь носит название модели Бора - Резерфорда и является той основой, на которой покоится вся современная атомная физика.
Одной из основных черт Резерфорда при его экспериментировании была исключительная наблюдательность, уменье обобщить явление, выяснить самое важное, самое нужное. Это можно проследить на ряде примеров. Когда он открыл эманацию тория, то он исходил из наблюдения разницы в ионизации, производимой торием при открытой и закрытой дверце электроскопа. Казалось, что поток воздуха, проходящий через препарат, изменяет радиоактивность самого тория. Резерфорд стал собирать этот воздух и сразу обнаружил, что он сам радиоактивен. Это и было открытием эманации. Большинство ученых, увидя разницу, начало было изучать явление либо при закрытой, либо при открытой дверце. Резерфорд же сразу ставит вопрос, почему это явление происходит так, а не иначе, и сейчас же старается уяснить себе, в чем тут дело. Вот этот неизменно возникающий вопрос "почему?" и таил в себе ключ к великим открытиям.
Вот другой случай. Его замечательная наблюдательность проявилась и при открытии искусственного разложения вещества. Дело в том, что когда наблюдали сцинтилляции, то часто оказывалось, что из бомбардируемого вещества вылетают лучи с очень длинным пробегом - гораздо более длинным, нежели пробег бомбардирующих α-частиц. Их наблюдали все, часто о них говорили, но никто не пытался их объяснить, никто не задавал себе вопроса "почему?". Резерфорд решил, что это явление надо проанализировать и попытаться выяснить, в чем дело. Вскоре объяснение было найдено. Оказалось, что под влиянием бомбардировки а-лучами атомы азота, всегда присутствующего в воздухе, распадаются. Этим и объяснялись длинные пробеги. Резерфорд поставил свои опыты исключительно просто. На рисунке
Научная деятельность Резерфорда
изображен его прибор. Герметическую камеру 1 через два крана можно заполнить газом при различных давлениях (2 - источник α-частиц, 3 - экран, на котором наблюдают сцинтилляции с помощью микроскопа 4). Экран со стороны источника α-частиц покрыт серебряной пластинкой, которая поглощает значительную часть энергии их пробега. Наполняя камеру 1 азотом, Резерфорд наблюдал, что при некотором давлении большинство сцинтилляций пропадает. Это происходит тогда, когда α-частицы, испускаемые радиоактивным источником, тратят всю энергию на ионизацию воздуха, и не доходят до экрана. Но остающиеся сцинтилляции указывали на присутствие очень малого количества α-частиц с пробегом в несколько раз больше пробега α-частиц, испускавшихся источником. Если вместо азота взять другой газ, например углекислоту или кислород, то таких остаточных сцинтилляций не появляется. Единственное объяснение в том, что они появляются из азота. Так как энергия остаточных α-частиц больше, чем первичных, то они могут появляться только за счет разложения ядра атома азота. Так было доказано разложение азота и принципиально решена задача алхимии.
Такая простота постановки вопроса, так просто экспериментально оформленная, не может не поразить любого исследователя, не только физика. Подобная простота является исключительно гениальной, в особенности когда она ведет к таким поразительным результатам.
Многие говорят, что Резерфорд обладал исключительной интуицией - он как бы чувствовал, как сделать опыт и что искать. Под интуицией обычно подразумевается какой-то бессознательный процесс, который идет внутри человека,- это то, чего нельзя объяснить, что подсознательно приводит к правильному решению. Я лично думаю, что, может быть, это отчасти и правда, но во всяком случае это сильно преувеличено. Для обычного читателя просто неизвестно то колоссальное количество работы, которое производит ученый. Он узнает только ту часть, которая ведет к определенным результатам. Наблюдая Резерфорда вблизи, можно было видеть, какое колоссальное количество работы он выполнял. Его энергия и энтузиазм были неисчерпаемы. Он все время работал и все время искал чего-то нового. Резерфорд публиковал и доводил до сведения своих товарищей ученых только работы с положительными результатами, и вряд ли они составляли больше нескольких процентов той громадной работы, которую он проводил; остальное не только не было опубликовано, но вообще оставалось неизвестным даже его ученикам. Иногда только по отдельным намекам, прорывавшимся в разговоре с ним, можно было уловить, что он нечто пробовал, но у него не вышло. Он не любил говорить о проектах своих работ и охотнее говорил только о том, что уже сделано и дало результаты.
Одним из блестящих примеров его исключительной проницательности является открытие нейтрона. Нейтрон- это материальная частица, по массе равная ядру водорода, но не несущая никакого заряда. Экспериментальное доказательство существования такой частицы было сделано Чадвиком - ближайшим учеником Резерфорда - в Кембридже в 1932 г. За это открытие Чадвик получил Нобелевскую премию. Он изучал одно явление, при котором в результате бомбардировки бериллия γ-лучами полония получились чрезвычайно проникающие лучи. Ему удалось показать, что это не были γ-лучи. Впервые эта радиация была обнаружена Боте и исследована затем супругами Жолио-Кюри, но объяснить ее удалось только Чадвику, который доказал, что в данном случае мы имеем дело с нейтронами. Открытие нейтрона играет огромную роль в современной ядерной физике, так как нейтрон является одной из основных элементарных частиц, из которых построены ядра всех элементов. Оказывается, что Резерфорд за 12 лет до открытия нейтрона чрезвычайно подробно предсказал возможность его существования. Вот выдержка из лекции Резерфорда в Королевском обществе, прочитанной в 1920 г.:
"Если мы правы в этом предположении,- говорил резерфорд,- то очень вероятно, что один электрон может связывать два ядра водорода или, что также возможно, одно ядро водорода. В первом случае это влечет за собой возможность существования атома с массой, равной почти 2, и с одним зарядом, который должен рассматриваться как изотоп водорода. В другом же случае это приводит к мысли о возможности существования атома, масса которого 1 и ядерный заряд 0.
Такое атомное образование не представляется невозможным. Современные взгляды таковы, что нейтральный атом водорода рассматривается как ядро с единичным зарядом, к которому на некотором расстоянии присоединен электрон, и спектр водорода объясняется движением этого удаленного электрона. При некоторых условиях, однако, электрон может быть связан с ядром водорода сильнее, образуя нечто вроде нейтрального дублета. Такой атом имел бы новые свойства. Его внешнее поле было бы практически равно нулю повсюду, за исключением области, прилегающей непосредственно к ядру. И по этой причине он мог бы свободно проходить через вещество. Его присутствие было бы трудно уловимо спектроскопом, и, вероятно, его было бы невозможно сохранить в закрытом сосуде. С другой стороны, он должен был бы свободно входить в структуру атомов и мог бы или соединяться с ядром, или быть разложенным его сильным полем, результатом чего возможен был бы вылет заряженного атома водорода или электрона или же их обоих".
Таким образом, Резерфорд задолго предсказал все те основные моменты, по которым стала развиваться вся ядерная физика после открытия Чадвика и Жолио-Кюри.
Я не назвал бы этот процесс интуицией. Это процесс глубокого мышления и глубокого экспериментирования. Мы все знали, что Резерфорд сам искал нейтрон - он искал его долго и настойчиво, но не нашел его там, где искал. В этой ситуации много зависело от случая. По, чему надо было выбрать бериллий и полоний, а не другие вещества - этого нельзя было предвидеть теорией. Тут надо было просто упорно искать...
Смерть Резерфорда - очень тяжелый удар для ученых всего мира. В нем наука потеряла величайшего со времен Фарадея пионера физических исследований. В продолжение всей своей жизни, столь плодотворной научными открытиями, он работал над самыми фундаментальными проблемами современной теории атома.
Его можно рассматривать не только как создателя новой главы в науке, но и как создателя целой новой науки - физики ядра.
Уже с 1896 г., совсем молодым человеком, он начал изучать радиоактивность, которая только была открыта, и с тех пор его работа, продолжавшаяся 40 лет, каждый год давала человечеству новые открытия и новые идеи, которые были руководящими в атомной физике во всем мире.
Его влияние на международную науку значительно усилилось благодаря большому количеству учеников всех национальностей, в том числе ряда советских ученых, которые работали в лаборатории Резерфорда. Его самоотверженность и необычайная индивидуальность заслужили с их стороны не только уважение и восхищение, но также и глубокую любовь. Так была создана вокруг него самая крупная школа физиков, которая когда-либо существовала. И мы легко понимаем, почему его смерть ощущалась многими учеными как большая личная потеря.