А Можно ли достичь Луны в ракете, удаляющейся от Земли со скоростью автомашины?
Б Из каждых десяти опрошенных двое-трое считают это невозможным. Для полета на Луну нужна вторая космическая
скорость - и баста!
Космический век уже создал свои, космические, предрассудки. Надо от них освобождаться. Предыдущая задача показала, что законы небесной механики и законы космонавтики - не одно и тоже. Попробуйте преодолеть гипноз космических скоростей: опишите полет к Луне с постоянной умеренной скоростью и ваши впечатления о нем. Вам поможет аналогия: чтобы перебросить камень через 10-метровое дерево, надо придать камню вертикальную скорость порядка 15 м/с; в то же время комар достигает его вершины, двигаясь со скоростью 0,1 м/с.
В Вы уже знаете, что совершить круговой полет вокруг Земли можно в принципе с любой скоростью - и больше, и меньше первой космической. Но при этом понадобится держать двигатели все время включенными. Первая космическая скорость нужна для кругового полета с выключенными двигателями.
Это же верно и для полета к Луне. С выключенными двигателями можно достичь Луны только при условии, что у Земли корабль приобрел вторую космическую скорость*). А полет с постоянно включенными двигателями позволяет добраться до Луны при любой скорости.
*) (Точнее, несколько меньшую. Вторая космическая скорость нужна для параболической орбиты, по которой корабль может уйти от Земли бесконечно далеко. Для полета же к Луне достаточно эллиптической орбиты, апогей которой будет в сфере действия Луны, т. е. там, где тяготение Луны больше тяготения Земли. Массы Земли и Луны относятся как 81 : 1; поэтому точка, где силы тяготения Земли и Луны равны, делит прямую Земля - Луна в отношении √81 : √1 = 9 : 1.)
Теперь о впечатлениях. Ракета летит равномерно и прямолинейно. Следовательно, в ней нет ни перегрузок, ни невесомости. Состояние такое же, как если бы она была неподвижна в той же точке. Существует естественная весомость в соответствии с законом всемирного тяготения. По мере удаления от Земли сила тяготения убывает обратно пропорционально квадрату расстояния. Именно так нужно регулировать и силу тяги двигателей: сумма сил тяготения и тяги должна равняться нулю, иначе полет перестанет быть равномерным и прямолинейным.
Когда до Луны останется одна десятая часть пути, сила тяги должна обратиться в нуль, так как в этой точке земная сила тяготения уравновешивается лунной и не нуждается в уравновешивании силой тяги. Ракета движется равномерно по инерции. Наступила невесомость. После этого лунное тяготение начинает преобладать над земным. Чтобы поддержать равномерность движения, разверните двигатель соплом к Луне и тормозите. Сила тяги должна быть равна силе тяготения Луны (за вычетом остатков земного тяготения). По мере сближения с Луной сила тяготения возрастает обратно пропорционально квадрату расстояния до Луны. И если так o же растет и сила тяги (торможения) двигателей, то движение остается равномерным, а невесомость в корабле постепенно превращается в лунную весомость - около одной шестой от земной.
Стало традицией упрекать Жюля Верна за то, что при описании полета из пушки на Луну он допустил ошибку. Да, он упустил из виду, что в его снаряде невесомость будет на протяжений всего полета. Но зато если бы на место его снаряда поставить ракету из нашей задачи, то жюль-верновское описание ощущений космонавтов оказалось бы идеально точным (если не считать непрерывной вибрации от двигателей).
Итак, полет к Луне можно осуществить с комфортом: без перегрузок и почти без невесомости. Такие условия может перенести любой нетренированный человек. Почему же современные корабли летают иначе: с сильной перегрузкой на активном участке полета и с полной невесомостью на орбите? Только из-за необходимости экономить топливо. Для непрерывной работы двигателя при равномерном движении к Луне топлива не хватит. В этом смысле вариант хуже, чем движение с малой постоянной скоростью, придумать нельзя. Впрочем, можно: пусть ракета зависнет неподвижно над Землей. Для поддержания ее в неподвижности потребуется непрерывная работа двигателя. При этом топливо может расходоваться сколь угодно долго, а продвижения вперед не будет.
Этот крайний абсурдный случай показывает, что надо делать. Нужно как можно быстрее придать ракете необходимую скорость, чтобы топливо сгорело как можно раньше и не было бы лишних затрат энергии на его подъем на высоту. Циолковский показал, что идеальным является мгновенное сгорание топлива и мгновенный Разгон ракеты до нужной скорости. Лучше всего приближается к идеалу пушечный выстрел. "Из пушки на Луну" - довольно экономичный способ космического полета. Но это другая крайность, невозможная из-за недопустимо больших перегрузок космонавтов.
Сейчас в космонавтике применяется компромиссный вариант, одинаково далекий от обеих крайностей: на активном участке помета космонавт подвергается большим перегрузкам, но в пределах Допустимых, а затем наступает невесомость.
Впрочем, в полете к Луне с постоянной автомобильной скоростью имеется и одно существенное неудобство: при скорости 100 км/ч путешествие к Луне будет длиться 3800 ч, т. е. около 160 сут. И хотя движение к Луне с постоянной скоростью довольно комфортабельно, но эту скорость надо выбирать намного выше.
Прежде чем расстаться с задачей, надо сделать одну оговорку: мы не учитывали, что цель нашего путешествия - Луна - сама движется, причем довольно быстро - со скоростью порядка 1 км/с. Это больше скорости "Москвича", но это не значит, что на Луну нельзя попасть со скоростью автомашины. Орбитальная скорость Луны направлена под прямым углом к трассе нашего "авто" (с небольшими периодическими отступлениями от прямого угла в обе стороны из-за эллиптичности орбиты). И если ракета будет хорошо нацелена в точку встречи с Луной и будет строго выдерживать заданные скорость и направление, то она рано или поздно достигнет Луны при любой скорости удаления от Земли.
При обычном (обычном!) космическом полете (например, вроде того, с помощью которого на Луну доставлен наш вымпел) учет : движения Луны необходим. И вы не должны из сноски на с. 54 делать вывод, что для достижения Луны достаточно прибыть в нейтральную точку между Землей и Луной без запаса скорости в надежде, что дальше Луна сама привлечет вас к себе. Ракета, неподвижная относительно Земли, двигалась бы там относительно Луны со скоростью около 1 км/с, а эта скорость на таком расстоянии от Луны является гиперболической (относительно Луны). Иными словами, Луна так быстро убежала бы от ракеты, что та не успела бы разогнаться к Луне ее полем тяготения и, совершив петлеобразное движение, вынуждена была бы вернуться восвояси к Земле. Для достижения Луны ракета должна зайти за нейтральную точку со, скоростью 1 км/с, направленной попутно с Луной (и нейтральной точкой). Тогда ракета окажется в неподвижности относительно Луны и находясь все время в ее поле тяготения, будет ею притянута.