Новости    Библиотека    Энциклопедия    Биографии    Ссылки    Карта сайта    О сайте


предыдущая главасодержаниеследующая глава

Пугающая "Арифметика"

В науке, как и в искусстве, есть вечные темы, волнующие человечество. Каждая эпоха вкладывала в эти животрепещущие темы свой, особый смысл.

Пожалуй, нет и не было в науке проблемы, на решение которой потрачено столько сил и времени, как на проблему строения материи - проблему частиц и волн, вещества и излучения. Возникнув в глубокой древности, она не покорилась ученым и в наши дни. Более того, теперь, когда мы познали ее глубже, она представляется более сложной, чем когда-либо ранее.

Эта проблема больше чем любая иная фонтанировала самыми разнообразными сенсациями, и истинными, и ложными.

Представление о простейших неделимых атомах позволило древним мудрецам нарисовать картину вечно изменяющегося мира. Они учили: мир - это атомы и пустота. Но позднее боязнь пустоты заставила Аристотеля отвергнуть мысль о существовании атомов. Пространство, считал он, сплошь заполнено материей. Эту материю он назвал эфиром. Точка зрения великого философа просуществовала века...

Такое же ложное ощущение истины создалось у людей и по отношению к природе света. Луч света еще от Евклида считался символом прямой линии. Но ни один из мудрецов не мог объяснить, как прямая линия, не изгибаясь, может оббегать препятствия и в чем тайна семицветной радуги...

Уже Роджер Бэкон предчувствовал волновую сущность оптических явлений. И величайшие оптики всех времен - Гюйгенс, Гримальди, Френель верили, что свет - это волны заполняющего мир океана материи, волны эфира. Одни считали свет продольными волнами эфира, другие - поперечными, некоторые говорили о натяжении эфирных струн, фантазировали об игре эфирных вихрей.

Только Ньютон заговорил о частицах света, корпускулах, которые могут распространяться в пустоте без помощи эфира. Но он же интуитивно почувствовал, что многообразие оптических явлений не может быть непротиворечиво объяснено ни на основе корпускул, летящих в пустоте, ни при помощи волн в океане светоносного эфира. Он склонялся к признанию корпускул, по понимал, сколь трудно примирить их с явно периодическими явлениями, проявляющимися в поведении света, со многими свойствами света, которые Ньютон подробно изучил при помощи опытов и описал математическими формулами.

Ньютон поставил проблему волн и корпускул перед потомками в серии вопросов, завершавших его замечательную "Оптику". Это был XVII век, а в следующем веке волновая теория света, опирающаяся на эфир и построенная Гюйгенсом, а затем усовершенствованная Френелем, вытеснила корпускулярную теорию Ньютона. Решающим аргументом послужила возможность объяснить все разнообразие известных явлений при помощи одной-единственной гипотезы: свет - это поперечные колебания эфира.

Если не идти глубже, не пытаться понять, что такое эфир, то теория Гюйгенса - Френеля не только не приводила к противоречиям, но укреплялась, встречаясь с любыми возражениями и парадоксами. Так, например, Пуассон, на основании теории Френеля, рассчитал, что на экране - в центре тени от непрозрачного диска - должно периодически появляться светлое пятно. Это пятно должно пунктуально возникать и исчезать по мере отодвигания диска от экрана, на котором наблюдают его тень.

Но Пуассон, серьезный и авторитетный ученый, заявил: этого не может быть!

Для рассмотрения работы Френеля Академия наук назначила специальную комиссию. В нее помимо Пуассона входили выдающиеся ученые: Араго, Био, Гей-Люссак и Лаплас. Комиссия согласилась с Пуассоном в том, что нельзя поверить в это предсказание, а значит, следует отвергнуть теорию Френеля, если... если он не подтвердит столь невероятное предположение опытом...

Такова судьба любых утверждений, построенных на гипотезах. Один-единственный опыт может опровергнуть все. Сколько заманчивых гипотез было опрокинуто экспериментом! Но в данном случае было не так.

Араго помог Френелю провести решающий эксперимент, и члены комиссии собственными глазами увидели периодическое появление света там, где "здравый смысл" предсказывал полную тень!

Казалось, теперь ничто не способно опровергнуть волновую теорию света. Тем более что после трудов Максвелла она, по существу, избавилась от последнего родимого пятна - от эфира. Уравнения Максвелла, хотя это было понято не легко и не быстро, сделали эфир излишним в волновой теории света. Свет, как частный случай электромагнитных волн, оказался самостоятельной субстанцией, способной существовать без помощи эфира, прямо в пустоте. Однако эта точка зрения продержалась недолго. Люди никогда не довольствуются достигнутым. Ученые не составляют исключения, а дороги науки не остаются подолгу прямыми.

Научившись сворачивать радужную полоску спектра в белый свет, Ньютон не только заложил основу экспериментальной физики, но и подвел мину замедленного действия под здание воздвигнутой им же классической физики.

Исследования Ньютона дали толчок тому, что в конце концов превратилось в спектральный анализ - способ изучения вещества на основе исследования свойств излучаемого или поглощаемого им света. Возник пристальный интерес к процессам взаимодействия света с веществом.

В середине XIX века начала интенсивно развиваться новая наука - термодинамика, возникшая как реакция на необходимость совершенствования паровых машин и на неудачи творцов вечных двигателей.

Попытки сочетать между собой эти две области науки и столкновение точек зрения термодинамики и спектрального анализа - привели в конце прошлого столетия к удивительной ситуации, получившей наименование ультрафиолетовой катастрофы. Расчеты показывали, что, вопреки очевидности, нагретые тела не должны излучать видимого света. Если они и способны испускать электромагнитные волны, то лишь самые короткие, лежащие далеко за пределами фиолетового края солнечного спектра. Там, по предсказанию формул, уходит в ничто энергия нашего мира...

Отчаянные попытки крупнейших физиков рассеять призрак ультрафиолетовой катастрофы, сочетать теорию с опытом, не приводили к успеху. Выход в канун нашего века нашел немецкий физик Планк. Впоследствии, в своей нобелевской лекции, он говорил:

"После нескольких недель самой напряженной в моей жизни работы тьма, в которой я барахтался, озарилась молнией, и передо мною открылись неожиданные перспективы".

Планк понял, что, несмотря на кажущуюся абсурдность его догадки, на очевидную противоречивость привидевшегося ему процесса, обмен энергией между световыми волнами и веществом происходит не непрерывно, на чем основывались прежние формулы, а малыми конечными порциями. Это вполне соответствовало бы ньютоновским корпускулам, но это никак невозможно представить, если продолжать считать, что свет - волны. Кроме того, если свет - волны, давно произошла бы ультрафиолетовая катастрофа, из мира ушло бы все тепло.

Значит, энергия в природе передается не непрерывно, а толчками, квантами. Именно такой механизм существования энергии спасает мир от гибели...

Эта сенсация разделила всех ученых на два лагеря - верящих в точку зрения Планка и яростно ей сопротивляющихся. Сам Планк оказался во втором лагере. Он себе не верил...

Положение еще более осложнилось неудачными попытками объяснить явление фотоэффекта, открытое также в конце прошлого века Столетовым. Оно заключалось в том, что под действием света из металла вылетали электроны, вылетали подобно осколкам камня из стены, в которую ударяет пуля. Было очевидно, что свет способен вырывать электроны из поверхности металла, освобождать их поодиночке.

Снова опыт заставлял ученых отнестись серьезно к мысли о прерывистой сущности света, снова намекал на его дробность.

В этих опытах по взаимодействию света и вещества была одна многозначительная тонкость: вероятность вылета электрона зависела не от силы света, а от его цвета. Более того, если цвет приближался к красному концу спектра, наступал момент, когда электроны не вылетали из металла вовсе - как ни увеличивали экспериментаторы интенсивность облучения.

Ученые в недоумении разводили руками - сильный красный свет ничего не мог поделать с электронами, тогда как фиолетовый, даже совсем слабенький, легко и непринужденно вылущивал из тела металла электрон за электроном! Ученые еще просто не осознали, что кванты света, расположенного ближе к фиолетовому концу солнечного спектра, имеют большую энергию, чем кванты красного, розового и других более "теплых" световых лучей.

Им надо было решить сразу две загадки: почему фотоэффект зависит от цвета облучающего вещество света и как свет, если он волна, взаимодействует с каждым электроном по отдельности?

Явление фотоэффекта не поддавалось разумному объяснению, если упорно стоять на одной позиции: считать свет волнами. Так могло быть только при двух условиях. Первое - если бомбардировка металла производится "пулями" света - тогда каждая пуля может взаимодействовать с электроном один на один. Второе условие - если световые пули обладают разной энергией. И этой энергии должно хватить для вырывания электрона. То есть энергия пули должна соответствовать или быть больше энергии, с которой электрон удерживается в теле металла.

Так обстоятельства вынудили физиков пойти на компромисс: признать, что волна света (хотя бы перед тем, как ударить в металл) дробится на отдельные цветные пули. И каждая пуля выбирает себе жертву по "зубам", вернее, по цвету.

Это был только подступ к истине. Истину понял лишь Эйнштейн. Он предположил, что свет вовсе не дробится на отдельные порции перед тем, как упасть на металл, а существует в такой форме. Это его естественное состояние, его природа. С самого момента излучения, то есть рождения, он представляет собой отдельные порции электромагнитной энергии - кванты света, или фотоны, как их теперь называют но предложению Комптона.

Эйнштейна не смущало, что на основе фотонов, так же как при помощи ньютоновых корпускул, невозможно объяснить сразу все оптические явления: и огибание светом препятствий, и радужные круги в тонких пленках разлитой нефти, и существование предельного увеличения микроскопа, и много других фактов, естественно вытекающих из волновой теории. Зато принятие квантовой структуры света аннулировало ультрафиолетовую катастрофу, нелепости фотоэффекта и ряд других парадоксов более глобального характера.

Итак, в обиход науки вошел квант света, элементарная частица света. Но, трудности в понимании природы света, его взаимоотношений и связи с материей не иссякали.

Начиная с 1706 года, вслед за малоизвестным Френсисом Хоксби, физики продолжали изучать красивое све-

чение, возникавшее при прохождении электрических разрядов через разреженные газы. Уильям К руке в последней четверти минувшего века довел эти исследования до такой полноты, что не сомневаясь утверждал: свечение вызывается движением частиц. Но каких? Ведь в сосудах не было других частиц, кроме молекул газа... Тут была тайна, более глубокая, чем могло показаться с первого взгляда.

Большинство ученых в то время склонялось к волновой теории этого свечения. Некоторые видели в нем новый вид излучения, поэтому за ним укрепилось наименование катодных лучей...

Крукс был ближе всех к истине. Но не понял ее до конца.

Прошло почти два столетия после первого опыта Хоксби, когда его начинание привело к результатам, о которых он не помышлял и которые, наверное, ошеломили бы его. Оказалось, что, пропуская электрический разряд через газ, он, не подозревая об этом, получал электроны!

В 1895 году в Париже Жан Перрен, проводя опыты с катодными лучами, поставил на их пути магнит, и эти лучи отклонились так, как если бы они состояли из частиц, несущих отрицательный заряд. Контрольные опыты показали, что катодные лучи вовсе не нейтральные молекулы, о которых писал Крукс, а гораздо более легкие частицы, заряженные отрицательно.

Обычно считают, что именно опыт Перрена привел к рождению электроники, хотя термин "электрон", предложенный за четыре года до того, не был связан с этим опытом. Джозеф Джон Томсон через два года определил для частиц, участвовавших в опыте Перрена, отношение их заряда к массе, а затем и величину этого заряда. Так впервые были измерены характеристики индивидуальной элементарной частицы. Конечно, не ее имели в виду древние атомисты, не о ней говорил Фарадей, заключивший из опытов по электролизу о существовании в жидкостях заряженных частиц. Не эти частицы участвовали в явлениях, наблюдаемых при разнообразных опытах с газами и жидкостями. Электрон раскрыл людям глаза на то, что атомы, считавшиеся издревле самой малой частицей материи, сами имеют сложную структуру. Теперь электрон был признан мельчайшим кирпичом мироздания, получив титул первочастицы.

Так на рубеже XX века неделимые атомы греческих философов окончательно сошли со сцены, уступив место не новым атомам, а новым гипотетическим неделимым элементарным частицам, из которых состоят все атомы химических элементов.

И тут ученые вспомнили об одной отвергнутой, забытой гипотезе. Еще в 1815 году некто Праут на основании законов Гей-Люссака и своих измерений установил теперь всем очевидный, а для того времени почти мистический факт: атомные веса многих химических элементов кратны весу атома водорода... Элементы разные, свойства разные, а атомные веса почему-то связаны между собой....

В следующем году Праут высказал такую крамольную мысль, что о ней постарались забыть: атомы всех элементов - родичи, они все образованы посредством объединения атомов водорода.

Измерения Берцелиуса и других химиков показали, что это похоже на правду, только точная кратность атомных весов химических элементов почему-то не соблюдается. Это было непонятно: под рукой не было ни опытов, ни гипотез, могущих прояснить вопрос; начало прошлого века изобиловало открытиями, и работы Праута потонули в море вопросов, не имеющих ответа.

Лишь открытие в 1868 году Менделеевым Периодического закона химических элементов возродило интерес к гипотезе Праута. Менделеев доказательно установил, что химические свойства элементов и многие их физические свойства находятся в периодической зависимости от их атомных весов. Отклонения же от точной кратности оставались непонятным фактом. Но это не могло подорвать убеждения в справедливости открытия Менделеева. Оставалось надеяться, что будущая теория все разъяснит.

Ученые вступили на нехоженую тропу познания сложной структуры атомов и молекул. Трудно сказать, как долго их поиски продолжали бы оставаться бесплодными, не натолкнись они на явление радиоактивности - самопроизвольного превращения одних веществ в другие. Понимание законов этого процесса привело к новой точке зрения на химические свойства вещества, продемонстрировало механизм процесса, развивающегося внутри атомов.

Первый шаг здесь был сделан сотрудником Резерфорда Фредериком Содди. Он угадал причину неудач многих выдающихся химиков, пытавшихся выделить в чистом виде радиоактивные элементы. Содди объявил, что этого нельзя достичь химическими методами - могут существовать радиоактивные элементы, занимающие одну общую клетку в таблице Менделеева и химически неразличимые, но тем не менее имеющие различные физические свойства. В том числе различный атомный вес. И то, что исследователь принимает за один элемент, может быть на самом деле смесью радиоактивных разновидностей этого элемента. Естественно, что среднее значение атомного веса смеси чаще всего не может быть целым числом. Такие неотличимые по химическим свойствам элементы получили наименование изотопов.

Несколько десятилетий Резерфорд и Содди потратили на то, чтобы понять внутриатомный характер радиоактивных превращений и убедить мир в истинности своих выводов. Они писали: "...радиоактивность - это атомное явление, сопровождающееся химическими изменениями, в котором порождаются новые виды вещества... Радиоактивность нужно рассматривать как проявление внутриатомного химического процесса!"

Нужно было очень верить в свое открытие, чтобы защищать теорию превращения элементов в самый разгар триумфа атомистики, когда большинство еще верило в неделимость атома.

Содди умер лишь двадцать с лишним лет назад, он смог увидеть еще при жизни, как плодотворна была его догадка.

Вскоре Томсон распространил идею изотопов на нерадиоактивный неон, атомный вес которого 20,2. Изучая движение атомов в вакууме и действуя на них одновременно электрическим и магнитным полем, Томсон разделил их на два сорта. Большая часть атомов неона имела атомный вес 20, а меньшая - 22. Томсон поручил разобраться в этом вопросе своему ассистенту Астону. Тот включился в работу, у него появились свежие идеи, но первая мировая война прервала исследования - Астона призвали в армию.

Астон все-таки успел внести в науку важный вклад. Он усовершенствовал электромагнитный метод разделения изотопов Томсона и создал замечательный по точности прибор, который назвал масспектрографом. Прибор сразу показал, что хлор с его нецелым атомным весом состоит из двух сортов атомов-изотопов: с массами 35 и 37. Число естественных нерадиоактивных изотопов быстро увеличивалось. Укреплялась вера в гипотезу Праута, ибо для первых тридцати элементов таблицы Менделеева целочисленные значения массы изотопов выдерживались с точностью до одной тысячной.

Исключение составлял только водород, для которого вместо единицы получалось 1,008 (если атомный вес кислорода принять в точности за 16)! Не веря себе, ученые продолжали измерять атомные веса, добиваясь все большей точности.

Постепенно выяснилось, что для более тяжелых элементов отклонение от целочисленности нарастает. Это невозможно было понять. Казалось бы, атомный вес тяжелого элемента, составленного из нескольких водородных атомов, должен быть равен сумме их атомных весов. Но он всегда оказывался меньше. Получалось, что масса нескольких, например десяти, свободных ядер водорода больше тех же десяти ядер водорода, слепившихся в ядро другого элемента. Почему?!

Астон, пытаясь ответить на этот вопрос, нащупал иллюстрацию поразительного явления, о котором догадался Эйнштейн и которое не обнаружил еще ни один эксперимент. Речь идет об удивительном выводе теории относительности: эквивалентности энергии и вещества.

После открытия Максвеллом законов электромагнитного поля выявилась иная, чем думали раньше, плоть мироздания. Не атомы и пустота, как считали древние атомисты; не сплошная материя, как хотелось верить Аристотелю. Плоть мира - это электромагнитное поле и вещество. Вот фундамент, на котором предстояло возводить новое здание мира. Надо было найти связь между этим полем - электромагнитным полем, включающим в себя свет, магнитные и электрические поля,- и веществом, мельчайшим зерном которого уже был признан электрон.

Первый шаг в объединении поля и вещества после Максвелла сделал голландец Лоренц. Он создал электронную теорию вещества. Он угадал, что электромагнитное поле Максвелла не нечто изолированное и оторванное от материи. Нет, в плоть поля природой вкраплены электроны - эти элементарные частицы вещества и одновременно элементарные частицы электричества (кванты вещества и электричества одновременно). Сочетание электронов с электромагнитным полем образует все многообразие мира, все материальные тела. Лоренц нарисовал и механизм дыхания этой Вселенной: движение электронов порождает электромагнитное поле, а волны ноля в свою очередь вызывают движение электронов.

Если электроны, частицы материи, являются одновременно и частицами поля, размышлял Эйнштейн, то что вынуждает нас фундаментом мира считать две ипостаси: поле и вещество? Не более ли логично опереться на одну реалию: поле? И самый мудрый из физиков мечтал охватить все явления Вселенной теорией единого поля, включающего и электромагнитные волны, и гравитационные, и ядерные, и все известные и еще неизвестные людям поля. Ему это не удалось, но он верил в целесообразность такой модели мира, чувствовал ее исчерпывающую полноту - и кто знает, может быть, еще при нашей жизни физика подтвердит эту концепцию...

Эйнштейн оставил нам теорию относительности - ключ к пониманию взаимоотношений поля и вещества. Эта теория помогает найти качественную и количественную меру взаимоотношений этих двух субстанций. И одна из мер - общий закон сохранения энергии и вещества, закон их эквивалентности.

Эйнштейн нашел такие удивительные проявления закона эквивалентности массы и энергии (в мире больших скоростей и энергий), столь парадоксальные, не наблюдаемые в повседневной жизни, что физикам это казалось курьезом, не заслуживающим внимания. Например, из теории относительности следовало, что масса движущегося тела больше его же массы в покое; масса нагретого тела больше массы холодного, частицы которого движутся медленнее. Разность, предсказываемая теорией, была столь мала, что казалось невозможным ее обнаружить. И мысль о том, что одно и то же тело может иметь разную массу, считалась многими бредом.

И вот Астону посчастливилось натолкнуться на одно из проявлений этого парадоксального предсказания. В том, что ядро тяжелого элемента, составленное из нескольких ядер водорода, имело иной вес, чем простая сумма весов тех же ядер водорода, но свободных, не связанных между собой, Астон увидел намек на эйнштейновское утверждение.

В 1920 году он объявил, что при объединении протонов в более тяжелые ядра результирующее ядро должно быть легче за счет "эффекта упаковки". Это было прямое следствие положения Эйнштейна об эквивалентности вещества и энергии. И действительно, чтобы разрушить образовавшееся тяжелое ядро и освободить протоны, потребовалось именно то количество энергии, которое соответствовало разности массы ядра и суммарной массы его осколков. Величина "дефекта массы" в точности определялась формулой Эйнштейна...

Итак, ученые, пытаясь ответить на "проклятый" вопрос о взаимоотношениях энергии и вещества, продвинулись еще дальше в глубь атома, в его ядро.

Перед ними стояли фундаментальные проблемы. "Мы знаем,- писал Эйнштейн,- что все вещество состоит из частиц немногих видов. Как различные формы вещества построены из этих частиц? Как эти элементарные частицы взаимодействуют с полем?"

Прежняя, классическая физика, не ведавшая о зернистой, квантовой структуре вещества и поля, не могла дать ответ.

Ответ могли принести только новые идеи, новые эксперименты.

предыдущая главасодержаниеследующая глава










© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2001-2019
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://physiclib.ru/ 'Библиотека по физике'

Рейтинг@Mail.ru
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь