Новости    Библиотека    Энциклопедия    Биографии    Ссылки    Карта сайта    О сайте


предыдущая главасодержаниеследующая глава

Сквозь "Магнитные очки"

Вокруг меня - взволнованные лица, горящие глаза. Это все молодые и уже немолодые ученые, физики, жадно слушающие докладчика. Сквозь уравнения и формулы, написанные на доске, они видят будущее.

В городе Черновцы в университете собрались ученые со всей страны, чтобы обсудить одну из таинственных проблем современной физики.

Один за другим физики поднимались на кафедру, чтобы рассказать о том, что они увидели в недрах вещества через "магнитные очки". Это были самые последние открытия, о которых их авторы не успели еще написать ни одной научной статьи, и тем более о них не упоминает ни один учебник.

...Но прежде чем продолжить наше повествование, нам придется перенестись из XX столетия в XIX, из Советской Буковины в Голландию.

Маленькая страна Голландия известна большинству как страна тюльпанов и сыра. Но истинную ее славу создал скромный молодой человек, впоследствии один из величайших физиков - Лоренц.

Студент Лейденского университета, он в восемнадцать лет получил диплом кандидата наук с отличием и жадно искал в науке необыкновенных деяний. Фортуна улыбнулась ему и подсунула в библиотеке физической лаборатории пачку нераспечатанных конвертов. Там лежали никем пока не читанные журналы, и в одном из них малоизвестный в Лейдене англичанин Максвелл рассказывал об удивительной тайне, открытой ему уравнениями: Вселенная, оказывается, купается в океане электромагнитных волн, и все, что мы видим вокруг,- игра волн и материи. Правда, полученные результаты Максвелл излагал очень скупыми фразами, почти терявшимися среди математических выкладок. Физики старшего поколения знали за ним эту особенность, может быть, поэтому работы Максвелла никто в Лейдене не читал, все привыкли к тому, что его трактаты трудны для понимания.

Это были 70-е годы прошлого столетия. В то время еще не нашелся ум, способный оценить новую вспышку максвелловского гения. Не только в Лейдене, но и в других научных центрах математическая форма, непривычная для физиков тех лет, затрудняла понимание сути дела, а сама идея Максвелла была столь ошеломляюща, что прошло еще много десятилетий, пока она получила общее признание.

Лишь через двенадцать лет живший в Германии талантливый экспериментатор Генрих Герц обнаружил на опыте электромагнитные волны, а затем молодой инженер-электрик русского флота Александр Попов применил их для связи - вернее, для радиосвязи, как говорят теперь.

Лоренц понял идеи Максвелла сразу, поверил ему и без колебаний пошел за ним, а затем и дальше, уже своим собственным путем. Его вклад заключался в том, что он не только проник в смысл максвелловской теории и развил ее дальше, но объединил электромагнитную теорию с не родившимся еще электроном и создал таким образом электронную теорию вещества.

Согласно новой теории, в безбрежный океан электромагнитных полей вкраплены отрицательные электрические заряды -" электроны, сочетания которых с положительными образуют все существующие тела. Взаимодействие полей и зарядов создает все многообразие мира.

На основе новой теории Лоренц не только сумел объяснить ряд фактов, не понятных современникам, но а предсказал явления, о существовании которых не подозревал дотоле ни один человек.

...Принято считать, что поколения людей сменяют друг друга каждые четверть века. Конечно, мы живем дольше. Но история показывает, что в среднем каждые двадцать пять лет в активную жизнь вступают массы людей, вооруженных новыми умениями, обладающих новыми стремлениями, опирающихся на современные знания. Среди ученых смена поколений происходит еще чаще. Каждое десятилетие в лаборатории вливается молодежь, готовая к тому, чтобы обогнать своих учителей, взглянуть на старые проблемы свежими глазами, найти новые, неожиданные решения.

Наверно, это имел в виду Макс Планк, говоря: "Обычно новые научные истины побеждают не так, что их противников убеждают и они признают свою неправоту, а большей частью так, что противники эти постепенно вымирают, а подрастающее поколение усваивает истину сразу".

Великий Лоренц, дожив до рождения теории относительности и квантовой физики, с восхищением приветствовал все новшества, но... в пределах классической физики, в пределах той модели мира и образов, в которых сам был воспитан.

Ничто не казалось ему более ясным, чем взаимодействие электромагнитного поля с электроном - этот ключевой акт, на котором основана работа электрических двигателей. Ничто не представлялось ему более красноречивой иллюстрацией этого акта, чем оптический спектр вещества.

Как и любой физик, он отлично знал, что каждое вещество имеет свой паспорт-спектр. В нем нет ничего, кроме светлых и темных полосок. Не посвященному в тайны науки человеку эти полоски не скажут ничего. Но физик по этим линиям может угадать характер и строение вещества, даже если оно находится от него на расстоянии многих световых лет. Так люди узнали о составе звезд и планет, о строении межзвездной среды, о существовании на Солнце еще не открытого на Земле элемента, названного затем гелием.

Линии спектра отражают многие тайны жизни макро- и микромира.

Когда Лоренц задумался над магией спектров, часть из этих тайн была расшифрована. Но гораздо большая их масса дразнила своей неразрешимостью. Одна из тайн особенно волновала воображение Лоренца: некоторые линии спектров атомов расщеплялись. Иногда они как бы расплывались или же удваивались, даже утраивались.

Было установлено, что так проявляется влияние магнитного поля на исследуемое вещество. Но детали, подробности, глубина явления ускользала от исследователей. Лоренц сознавал, что его теория неспособна описать, объяснить это загадочное поведение линий спектров. Лишь через десятилетия с помощью квантовой физики было установлено, что причина крылась в магнитных свойствах электронов и ядер атомов.

Изучение этих свойств стало задачей физики начала нашего века. Но ни Лоренц, ни другие великие физики-классики не могли с ней справиться. Ответ должна была дать новая физика. "Старикам" мешали запреты классической физики. Они даже признавали, что квантовая механика позволяет правильно рассчитать все детали расщепления спектральных линий. Признавали, но не хотели примириться с тем, что квантовая механика не могла нарисовать детальной картины явления и принуждала их мыслить абстрактно, оперировать только формулами.

Для людей, взгляды которых сформировались на основе классической физики, возникало затруднение: формулы квантовой физики заставляли их отказываться от привычной связи между причинами и следствиями, требовали признания невозможности точного и полного описания событий, происходящих в микромире.

С радикальными идеями квантовой физики Лоренц не примирился до конца своих дней. И так и не нашел правильную дорогу в "Страну магов", где формировались законы магнетизма.

Тайне отношений электромагнитного поля и материи посвятил свою жизнь младший соотечественник Лоренца, его ученик и наш современник Гортер.

Он был молод, рожден XX веком, новые представления физики не казались ему ночным кошмаром. Он поклонялся старому богу, классической физике, и ее жрецу, своему учителю, но уже не мог не верить новым богам - квантовым закономерностям и их апостолам - Бору, Гейзенбергу, де Бройлю, Дираку. Вооруженный их идеями, Гортер продолжил исследования магнитных свойств вещества.

Он играл в простую игру. Брал самодельный электромагнит, между его полюсами всовывал кусочки различных материалов - металлов, кристаллов, ампулы с жидкостями - и то включал, то выключал электрический ток в обмотке электромагнита. Гортер как бы просвечивал вещества магнитным полем, смотря, что при этом происходит. Игра простая, но она привела Гортера к пониманию важных законов строения вещества.

Намагничивая различные кристаллы и жидкости при помощи сильного электромагнита и наблюдая, как исчезает эта намагниченность после выключения внешнего поля, он сумел получить ряд новых и ценных сведений о строении вещества, о влиянии теплового движения атомов на поведение твердых тел и жидкостей.

Казалось, само время шло навстречу Гортеру. Оно подбросило ему еще одного помощника - радиоволны. Родилась электронная лампа. Из рук связистов она перешла в лаборатории физиков, и все большему числу ученых становилось ясно, что, просвечивая вещества радиоволнами, можно проникнуть в тайны их строения даже более успешно, чем с помощью одного лишь магнитного поля.

Физики-теоретики, опираясь на уравнения квантовой механики, предсказывали, что, пробираясь сквозь дебри, образованные внутренней структурой реальных тел, радиоволны разных частот ведут себя различно. Они по-разному поглощаются веществом, и это поглощение сильно зависит от частоты радиоволны.

И где-то, на какой-то частоте - специфической для данного вещества - должен возникнуть особый эффект: пик поглощения, резонанс, таинственное явление, которое обещало пролить свет на многие непонятные стороны поведения веществ. Во многих веществах следовало ожидать появления нескольких резонансных пиков, характерных именно для них.

Теория подсказывала, что многообещающими должны быть исследования кристаллов, особенно в том случае, когда во время облучения радиоволной они находятся в поле сильного магнита. Наиболее интересными казались исследования именно тех кристаллов, магнитные свойства которых изучал Гортер и его ученики.

Какие же явления происходят при этом в недрах кристаллов? Некоторые атомы, входящие в кристаллы, ведут себя как маленькие магнитики, стремящиеся, подобно стрелке компаса, повернуться в направлении внешнего магнитного поля. Но хаотическое тепловое движение не дает им послушно следовать велению магнитного поля. Ведь случайные толчки мешают и стрелке компаса правильно указывать на север.

Еще сильнее, чем случайные толчки, на крошки-магнитики могут действовать толчки регулярные, особенно если они попадут в резонанс с их колебаниями. Кому неизвестна катастрофа, вызванная тем, что шаги отряда солдат попали в резонанс с колебаниями моста и разрушили его! Вспоминаются и случаи, при которых вибрации двигателей вызывали разрушения морских судов и самолетов. Резонанс, столь приятный в музыке, может оказаться весьма опасным в одних случаях и очень полезным в других, если суметь им разумно воспользоваться.

Читатель, наверное, уже догадался, что такие толчки в кристаллах могут создаваться радиоволнами. Тогда-то и происходит то внезапное, бурное поглощение энергии радиоволн атомами вещества, которое и названо резонансным поглощением.

Теоретики были убеждены, что, изменяя настройку генератора радиоволн, можно легко обнаружить эти резонансы.

Что могло быть проще - вращай ручку настройки лампового генератора и наблюдай!

Дело было за экспериментаторами.

И не только Гортер, многие экспериментаторы пытались обнаружить эти загадочные резонансы, но тщетно. Никто не понимал, в чем была причина неудач... Гортер подошел почти вплотную к открытию, но... прошел мимо, хотя шел к нему тем путем, что и советский ученый Евгений Завойский.

Обратимся теперь к научным событиям, происходившим в первой половине 30-х годов в Казани. Этот древний город с устоявшимися культурными традициями славится своим университетом.

В нем учился великий Ленин. В его стенах работали замечательные математики, в том числе один из создателей неевклидовой геометрии Лобачевский, один из крупнейших химиков прошлого Бутлеров и наши современники, замечательные химики - отец и сын Арбузовы.

Победное окончание Великой Отечественной войны совпало с одним из величайших достижений современной физики, незадолго до этого еще раз прославившим Казанский университет.

Евгений Константинович Завойский со студенческих лет вынашивал идею об использовании электромагнитных волн для изучения строения и свойств веществ. Его, как и Лоренца, завораживали тайны, скрытые в оптических спектрах атомов.

Сочетание этих линий, их расположение в спектрах, появление и исчезновение стали предметом раздумий Завойского.

Еще в предвоенные годы стало ясно, что исследование спектров не должно ограничиваться оптической областью. Многое могли бы поведать спектры в радиодиапазоне. Но лишь прогресс в радиотехнике дециметрового и сантиметрового диапазона, связанный с созданием, радиолокации, открыл возможности для успешных спектроскопических исследований в этом диапазоне. Рождалась радиоспектроскопия.

Зарубежные ученые использовали новые возможности для исследования газов. Теория предсказывала, а опыт раз за разом подтверждал, что именно в газах можно наблюдать возникновение резонансов при поглощении радиоволн. Расшифровка этих резонансов позволяла узнавать все новые детали строения молекул. И эта область экспериментальной работы привлекала все большее число исследователей.

Теоретики, пролагая путь экспериментаторам, ставили все более интересные задачи в радиоспектроскопии газов. Многие из ученых обращались к загадке неуловимых резонансов в магнитных кристаллах. Проблемы, возникавшие здесь, были нелегкими. Но недаром физики шутят: был бы факт, а теория найдется. Появились расчеты, показывающие, что резонансы, которые искал Гортер и его последователи, вообще не должны наблюдаться.

Большинство физиков, занимавшихся радиоспектроскопией, спокойно восприняли эти результаты. Ученые, работавшие в других областях, просто не обратили на них внимания. Завойский же, глубоко обдумывавший сущность процессов взаимодействия радиоволн с веществом, не мог согласиться с подобными выводами.

Он восстал против авторитета теоретиков. Он понял, что неудачи попыток Гортера и других исследователей могут объясняться тем, что расчеты, на основе которых велись эксперименты, не опирались на правильные опытные данные. В эти расчеты помимо универсальных констант, таких, как постоянная Планка и некоторые другие, входили величины, ранее полученные из опытов, основанных на применении постоянного магнитного поля.

Постоянное магнитное поле! А если?..

Говорят, что не меньше, чем открытием Америки, Колумб прославился решением знаменитой задачи о крутом яйце. Чтобы поставить его вертикально, он просто надбил его. Как "немного" нужно, чтобы стать знаменитым!

Теперь нам кажется, что Завойский сделал очень небольшой шаг. Но этот шаг шел в сторону от проторенной дороги. И он привел молодого физика к успеху.

"Почему все изменяли настройку генератора радиоволн, оставляя магнитное поле неизменным?- недоумевал Завойский.- Такова традиция... Но есть ведь и другой путь. Пусть им еще никто не шел. Здесь есть свои трудности, но нет никаких разумных запретов". И Завойский решился. Вместо того чтобы вращать ручку своего генератора, перестраивая его частоту, как это делали исследователи до него, он оставил генератор в покое. Решил искать резонанс, меняя величину магнитного поля того магнита, между полюсами которого располагался кристалл. Для этого он плавно изменял величину электрического тока, протекающего по обмотке электромагнита, и непрерывно наблюдал, как радиоволны поглощаются веществом.

Так, в 1944 году был впервые обнаружен замечательный эффект, долго ускользавший от самых опытных экспериментаторов, носящий несколько непонятное для непосвященных наименование - электронный парамагнитный резонанс. Теперь мы с уверенностью относим открытие Завойского не только к самым замечательным, но и к самым плодотворным открытиям XX века.

Завойский обнаружил механизм, приводящий к поглощению радиоволн в кристаллах. Выяснилось, что этим * механизмом управляли электроны - те самые электроны, что входят в состав некоторых ионов, образующих кристалл. Электроны оказались миниатюрными приемниками радиоволн!

Перед экспериментаторами раскрылись необычайные потенциальные возможности использования этого тонкого, гибкого, легко управляемого механизма для создания принципиально нового вида радиоприемников. Ведь эти электроны связаны электрическими силами с атомными ядрами, а через них с самим кристаллом. Следовательно, настройка этих приемников зависит как от строения кристалла, так и от входящих в него ионов. Изменяя структуру кристалла и вводя те или иные ионы в виде добавок, можно влиять на настройку этого удивительного радиоприемника!

Так родилась фантастическая идея радиоприемника, радикально отличающегося от всего известного ранее. В таком приемнике деталями служат не радиолампы, а электроны - еще более мелкие кирпичики материи, еще более удивительные "радисты", чем атомы и молекулы аммиака, прирученные позже Басовым и Прохоровым.

Открытие Завойского легло в основу нового типа усилителей радиоволн с чрезвычайно низким уровнем собственных шумов. И именно этот усилитель сделал возможной удивительную сенсацию, облетевшую весь мир,- локацию Венеры, Меркурия и Марса. Об этом рассказ впереди.

"Магнитные очки" стали еще более зоркими, более резкими, и ученые смогли разглядеть сквозь них в микромире то, о чем даже не подозревали. "Магнитные очки" стали модным методом физического исследования. С их помощью сделано много ценнейших открытий в области строения вещества, и особенно твердого тела и полупроводников.

Электронный парамагнитный резонанс раздвинул возможности химии. Сейчас его взяли на вооружение биологи, они приступили к изучению парамагнитного резонанса в биологических объектах, в живых клетках и организмах.

Открытие Завойского не только явилось триумфом нового экспериментального метода, но и подтверждением теоретических прогнозов. Оправдалось предположение о том, что при взаимодействии электронов с радиоволнами проявляются свойства вещества, остающиеся скрытыми, когда опыт сводится лишь к наблюдению за его намагничиванием и размагничиванием. Начинался новый этап в наступлении на тайны материи.

Многие ученые увлеклись исследованием парамагнитных веществ, поисками новых эффектов и практических возможностей.

Прохоров вместе со своим аспирантом Маненковым одними из первых приступили к исследованию парамагнитного резонанса, стремясь проникнуть в сокровенные тайны нового явления. Главные усилия Прохорова и Маненкова были направлены на исследования парамагнитного резонанса в рубине. Они изучали природные и искусственные рубины. Выращивали их в лаборатории, заказывали на заводах.

Рубины давно славятся своей твердостью, поэтому широко применяются в качестве сырья для подшипников, используемых в часах и различных точных приборах. Но Прохорова и Маненкова привлекала в рубине не его твердость, а совсем иные достоинства. Наши ученые уже далеко продвинулись в исследованиях и частично опубликовали их, когда почта принесла в библиотеку института очередной номер журнала "Физические обозрения" из США.

В этом номере опубликована статья Николаса Блумберхена, в которой он предлагает использовать для усиления и преобразования сверхвысоких частот совершенно неожиданные материалы: фторсиликат никеля и этил-сульфат гадолиния. Блумберхен был уже достаточно авторитетным исследователем, чтобы к его статье отнестись с большим вниманием. Соотечественник Лоренца и Гортера, он родился в 1920 году, окончил Лейденский университет, защитил докторскую диссертацию и затем пересек океан в поисках более широкого применения своих способностей. В Америке его фамилию начали произносить на американский лад, и она зазвучала как Бломберген.

Блумберхен - физик-теоретик, отличающийся четким и рациональным подходом к задачам и умением выявлять пути экспериментальной проверки и практического применения своих результатов. В этот раз его статья под названием "Квантовый парамагнитный усилитель" имела подзаголовок: "Предложение усилителя нового типа".

Что поражало в этом названии? Слово "квантовый" напоминало усилитель Басова, Прохорова, Таунса. Слово "парамагнитный" заставляло связать прибор с работами Гортера и Завойского. Что же Блумберхен взял от одного и что от другого направления? И почему из всех заманчивых возможностей, открытых новым явлением, Блумберхен сосредоточил внимание на одном: усилении радиоволн?

Многие стремились создать квантовые усилители радиоволн. Однако практические перспективы открывались лишь в диапазоне коротких радиоволн, длиной в несколько десятков метров. Но мало кто надеялся и пытался реализовать эти возможности, ибо было ясно, что новые, сравнительно сложные усилители не могли конкурировать в этом диапазоне с обычными радиолампами и транзисторами.

Блумберхен пошел своим путем, в котором оказались сплавленными два направления, исходящие из его родного университета. Он предложил применить явление парамагнитного резонанса," предсказанного Гортером, и работать в области сверхнизких температур при температуре жидкого гелия, впервые полученного в Лейдене Камерлинг-Онесом.

В статье Блумберхена приведены не только уравнения, описывающие действие нового усилителя, но и оценки, показывающие, что такой усилитель должен обладать несравненно большей чувствительностью при приеме слабых сигналов, чем все известные ранее. Физиков особенно заинтересовал один аспект статьи. Автор указывал на радиоастрономию как на область, где применение подобного усилителя наиболее эффективно. Все сразу оценили эту рекомендацию однозначно: возникала возможность осуществить давнее намерение ученых - попытаться принять слабое радиоизлучение из космоса на волне 21 см, что подтвердило бы реальное существование космического водорода.

Блумберхен в своей статье обсуждает работу усилителя, который мог бы принять это радиоизлучение, и обращает внимание на то, что предлагаемый усилитель не только может использоваться в радиоастрономии, но способен расширить и возможности радиолокации.

Примерно через год американский ученый Сковал с сотрудниками осуществили идею Блумберхена. Их квантовый парамагнитный усилитель, в котором работали кристаллы этилсульфата гадолиния, погруженные в жидкий гелий, обладал всеми свойствами, предсказанными Блумберхеном.

Публикация Сковала открыла путь потоку статей о квантовых парамагнитных усилителях. Разные авторы применяли различные парамагнитные кристаллы, их усилители отличались конструктивными особенностями и длиной усиливаемых волн. Но принцип был единым. Вскоре выяснилось, что наилучшим и наиболее эффективным кристаллом для таких усилителей является все-таки рубин.

Повезло ли Прохорову или тут сработала его прославленная интуиция, но именно на рубине, как мы уже знаем, сосредоточилось его внимание.

Прохоров с группой своих аспирантов и сотрудников проводил обширные и глубокие исследования парамагнитных свойств рубина, исходя именно из того, что совокупность свойств этого драгоценного кристалла как нельзя лучше удовлетворяет требованиям, возникающим при создании квантовых усилителей дециметрового и сантиметрового диапазонов радиоволн.

История создания этих усилителей впервые продемонстрировала, что Прохоров является не обычным кабинетным ученым, а научным работником нового типа, способным не только выдвигать идеи и лично вести сложную исследовательскую работу, но и одновременно выполнять функции ученого-организатора, сплачивающего большие и разнородные коллективы для решения крупной комплексной задачи. Теперь уже поиски велись во многих научно-исследовательских институтах, причем они были не только экспериментального и теоретического плана, но и конструкторского. Идеи воплощались в приборы нового типа.

Но исследования не прекращались. Прохоров вместе с Маненковым продолжали изучать различные процессы, сопровождающие явление парамагнитного резонанса. Вместе с Карловым он исследовал трудности, которые должны были возникнуть при соединении будущего усилителя с антенной, стремился оценить важнейшую характеристику усилителя - рождающиеся внутри него шумы. На крупных магнитах НИИ ядерной физики МГУ Прохоров со своими аспирантами проводил физические исследования парамагнитного резонанса. А в ФИАНе, помимо глубоких физических исследований, уделял много времени поиску новых технических решений. Многие из них были затем использованы при разработке промышленных образцов квантовых парамагнитных усилителей, которая под его общим руководством с успехом велась в нескольких отраслевых институтах.

Целая серия усилителей со стерженьками, изготовленными из рубина и помещенными в волновод специального типа, была разработана и выпущена коллективом, руководимым Штейншлейгером, который активно участвовал в применении этих усилителей для радиоастрономических исследований.

В непосредственном контакте с Прохоровым работал коллектив Института радиотехники и электроники АН СССР (ИРЭ). Здесь Жаботинский и Францессон создали квантовые парамагнитные усилители нового типа, специально приспособленные для работы в дециметровом диапазоне воли. На волне, излучаемой космическим водородом, и на более длинных волнах они по всем основным характеристикам превзошли усилители лучших зарубежных моделей. Не удивительно, что коллектив создателей этих приборов, включающий сотрудников исследовательских организаций Академии наук и промышленности, был удостоен Государственной премии.

Несомненно, что высокое совершенство квантовых усилителей Института радиотехники и электроники обусловлено тем, что их создатели, начав с фундаментальных исследований, довели их до практического применения при решении сложной комплексной задачи. Эта задача - радиолокация планет - была поставлена директором ИРЭ академиком В. А. Котельниковым.

Владимир Александрович Котельников начал свой путь в науке с исследования проблем передачи информации, возникающих при создании любых линий связи. В предвоенные годы и во время войны многочисленные специалисты стремились увеличить пропускную способность линий связи, уменьшить влияние помех. Между учеными и инженерами шло в этой области настоящее соревнование. Но если вначале им удавалось достигать быстрых и существенных результатов, то постепенно продвижение начало замедляться, а затем стало совсем медленным и очень трудным. Однако большинство не находило здесь ничего особенного. Казалось, так и должно быть. Все легкое, лежащее на поверхности исчерпано, и нужны новые глубокие идеи. Будут идеи - возобновится и продвижение. Так считало подавляющее большинство специалистов. Так думал и Котельников. Он тоже искал новую радикальную идею. Искал и не находил.

Упорные размышления привели его к совершенно неожиданному результату. Он понял, почему замедлилось и затруднилось продвижение. Он сумел увидеть и доказать, что ученые и инженеры уже близко подошли к пределу, заложенному в самой природе сигналов и помех.

Очень может быть, что во время длительных размышлений, сложных расчетов и тонких экспериментов Котельников подсознательно опирался на историю развития тепловых двигателей, творцы которых настойчиво боролись за повышение их коэффициента полезного действия, не умея еще понять запрета природы, проявляющегося в неудачах любых попыток на этом пути. Возможно, он вспоминал и бесчисленных изобретателей вечного двигателя, заранее обреченных на разочарования, но еще не осознающих, что они восстали против законов термодинамики.

Котельников понял, что шумы и помехи, неизбежные в системе связи, ограничивают ее пропускную способность не потому, что ученые и инженеры не придумали достаточно остроумных способов борьбы с этими помехами. Они - в природе используемого метода, их можно уменьшить, но не уничтожить. Он разработал теорию помехоустойчивости, положившую конец безосновательным надеждам на возможность появления радикальной идеи, способной неограниченно повышать пропускную способность линий связи. Теория говорила - это невозможно так же, как создание вечного двигателя. Как знаменитое второе начало термодинамики заложило прочный фундамент под теорию и проектирование тепловых машин, теория потенциальной помехоустойчивости составила рациональную основу теории связи.

Эта научная находка стала фундаментом, платформой последующих достижений Котельникова и его научного авторитета. Его избирают председателем научного Совета по радиоастрономии АН СССР. Ему доверяют руководство всеми работами в этой новой и трудной области космических исследований. Он встает во главе всех работ по созданию уникальных радиотелескопов. Затем его избирают вице-президентом Академии наук СССР.

В 1974 году в День радио академику Котельникову вручают награду, которой удостаиваются наши и зарубежные ученые за выдающиеся достижения в области радиотехники,- Золотую медаль имени А. С. Попова. Кроме существенного вклада в теорию связи, имелись в виду пионерские работы по радиолокации планет.

За эту тему он взялся в конце 50-х годов. Его повое увлечение было продиктовано закономерностями научно-технического прогресса. И Котельникову, и другим ученым было ясно, что за искусственными спутниками настанет очередь посылать приборы к планетам и что астрономические данные о размерах солнечной системы недостаточно точны, чтобы обеспечить попадание космического аппарата на избранную планету. Уточнить эти данные могла только радиолокация.

Радиолокация планет, как, впрочем, и вся радиоастрономия, потребовала творческих усилий не только ученых, но и больших конструкторских и производственных коллективов. Ведь планетный радиолокатор или радиотелескоп - гигантское сооружение, напоминающее циклопические построения, знакомые нам по иллюстрациям к фантастическим романам.

И вот настал день, вошедший в историю науки как день величайшей сенсации.

предыдущая главасодержаниеследующая глава










© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2001-2019
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://physiclib.ru/ 'Библиотека по физике'

Рейтинг@Mail.ru
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь