Новости    Библиотека    Энциклопедия    Биографии    Ссылки    Карта сайта    О сайте


предыдущая главасодержаниеследующая глава

7. Взаимная связь электрических и магнитных полей

Новые свойства электромагнитного поля

Если бы неподвижные заряды создавали электрическое поле, а движущиеся - магнитное, и только, то семейство электромагнитных сил далеко не было бы столь обширным, каким оно является на самом деле. Более того, с достоверностью нельзя было бы утверждать, что эти поля - реальность, существующая в мире столь же несомненно, как, например, существование автора книги для ее читателей" Ученые (сторонники близкодействия) находились бы в положении начинающих авторов, не уверенных заранее, что у них найдутся читатели.

Только открытие новых свойств электромагнитных взаимодействий, которые уже без громадных натяжек нельзя было истолковать на языке дальнодействия (как это было сделано для законов Кулона и Ампера), совершенно изменило положение. Электрические и магнитные поля оказались теснейшим образом связаны. Магнитное поле способно в определенных условиях порождать электрическое без помощи зарядов, а электрическое - непосредственно порождать магнитное. Именно так: магнитное поле рождает только электрическое, а электрическое - только магнитное, которое, правда, в свою очередь может породить электрическое. Нечто похожее встречается в мире насекомых: гусеница превращается только в бабочку, а бабочка производит на свет только яйца, из которых вылупляются гусеницы, но никогда сами гусеницы не производят себе подобных непосредственно, так же как и бабочки.

Электромагнитная индукция

Не случайно, что первый и самый важный шаг в открытии этой новой стороны электромагнитных взаимодействий был сделан основоположником представлений об электромагнитном поле - одним из величайших ученых мира - Майклом Фарадеем. Фарадей был совершенно уверен в единстве электрических и магнитных явлений. Вскоре после открытия Эрстеда он записал в своем дневнике (1821 г.): "Превратить магнетизм в электричество". С этих пор Фарадей, не переставая, думал над данной проблемой. Говорят, он постоянно носил в жилетном кармане магнит, который должен был напоминать ему о поставленной задаче. Через десять лет в результате упорного труда и веры в успех задача была решена. Им было сделано открытие, лежащее в основе устройства всех генераторов электростанций мира, превращающих механическую энергию в энергию электрического тока. Другие источники: гальванические элементы, аккумуляторы, термо- и фотоэлементы дают ничтожную долю вырабатываемой энергии.

Электрический ток, рассуждал Фарадей, способен намагнитить кусок железа. Для этого достаточно положить кусок внутрь катушки. Не может ли магнит в свою очередь вызвать появление электрического тока или изменить его величину? Долгое время ничего обнаружить не удавалось.

Электромагнитная индукция
Электромагнитная индукция

Какого рода случайности могли помешать открытию, показывает следующий любопытный факт. Почти одновременно с Фарадеем швейцарский физик Колла- дон также пытался получить электрический ток с помощью магнита. При работе он пользовался гальванометром, легкая магнитная стрелка которого помещалась внутри катушки прибора. Чтобы магнит не оказывал непосредственного влияния на стрелку, концы катушки, в которую Колладон вдвигал магнит, надеясь получить в ней ток, были выведены в соседнюю комнату и там присоединены к гальванометру. Вдвинув магнит в катушку, Колладон шел в эту комнату и с огорчением убеждался, что гальванометр показывает нуль. Стоило бы ему все время наблюдать за гальванометром и попросить кого-нибудь заняться магнитом, замечательное открытие было бы сделано. Но этого не случилось. Покоящийся относительно катушки магнит мог лежать преспокойно внутри нее сотни лет, не вызывая в катушке тока.

С подобного рода случайностями сталкивался и Фарадей, потому что он неоднократно пытался получить электрический ток при помощи магнита и при помощи тока в другом проводнике, но безуспешно.

Открытие электромагнитной индукции, как назвал сам Фарадей это явление (по-русски слово "индукция" означает наведение), было сделано 29 августа 1831 г.*. Вот краткое описание первого опыта: "На широкую деревянную катушку была намотана медная проволока длиной в 203 фута, и между витками ее намотана проволока такой же длины, но изолированная от первой хлопчатобумажной нитью. Одна из этих спиралей была соединена с гальванометром, а другая с сильной батареей, состоящей из 100 пар пластин... При замыкании цепи удавалось заметить внезапное, но чрезвычайно слабое действие на гальванометре, и то же самое замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удавалось отметить ни действия на гальванометр, ни вообще какого-либо индукционного действия на другую спираль, несмотря на то, что нагревание всей спирали, соединенной с батареей, и яркость искры, проскакивающей между углями, свидетельствовали о мощности батареи" (М. Фарадей, "Экспериментальные исследования по электричеству", I серия).

*(Сравнительно редкий случай, когда столь точно известна дата нового замечательного открытия.)

Итак, первоначально была открыта индукция неподвижных друг относительно друга токов. Затем, ясно понимая, что замыкание и размыкание соответствуют сближению или удалению проводников с током, Фарадей экспериментально доказал, что ток возникает при перемещении катушек друг относительно друга.

Знакомый с трудами Ампера Фарадей понимал также, что ток - это магнит, а магнит в свою очередь - совокупность токов. 17 октября, как зарегистрировано в его лабораторном журнале, был обнаружен индукционный ток в катушке в момент вдвигания (или выдвигания) магнита.

В течение одного месяца Фарадей экспериментально открыл все существенные особенности явления. "Его могучий ум обошел широкое поле и едва ли оставил для сбора последователям хотя бы крохи фактов", - писал друг Фарадея Тиндаль. Оставалось только придать закону строгую количественную форму и полностью вскрыть физическую природу явления. Уже сам Фарадей уловил то общее, от чего зависит появление индукционного тока в этих, выглядевших внешне по-разному, опытах. В контуре возникает ток при изменении числа силовых линий магнитного поля, пронизывающих площадь, ограниченную этим контуром (в частности, при изменении величины магнитного поля, пронизывающего контур). И чем быстрее меняется это число, тем больше ток. Причина изменения числа силовых линий совершенно безразлична. Это может быть и изменение силы тока (а следовательно и его поля), и сближение катушек, и движение магнита.

Фарадей не только открыл явление, но и первым осуществил несовершенную пока еще модель генератора электрического тока, превращающего механическую энергию вращения в ток. Это был массивный медный диск, вращающийся между полюсами сильного магнита. Присоединив ось и край диска к гальванометру, Фарадей обнаружил отклонение стрелки. Ток был, правда, слаб, но найденный принцип позволил впоследствии построить мощные генераторы. Без них электричество и по сей день было бы мало кому доступной роскошью.

Направление индукционного тока и сохранение энергии

Возникший индукционный ток немедленно начинает взаимодействовать с породившим его током или магнитом. Если магнит (или катушку с током) приближать к замкнутому проводнику, то появляющийся индукционный ток обязательно отталкивает магнит. Для сближения необходимо совершить работу. При удалении магнита возникает притяжение. Это правило, подмеченное Ленцем, выполняется совершенно неукоснительно. Представьте себе, что дело обстояло бы иначе: вы подтолкнули магнит к катушке, он сам собой устремляется внутрь ее и... нарушался бы закон сохранения энергии. Ведь механическая энергия магнита увеличивалась бы и одновременно возникал бы ток, что само по себе требует затраты энергии, ибо ток тоже может совершать работу. Природа мудро распорядилась направлением индукционного тока, с тем чтобы запасы энергии не изменялись. Индуцированный в якоре генератора электростанции ток, взаимодействуя с магнитным полем статора, тормозит вращение якоря. Только поэтому для вращения якоря нужно совершать работу, тем большую, чем больше сила тока. За счет этой работы и возникает индукционный ток.

Интересно отметить, что если бы магнитное поле нашей планеты было очень большим и сильно неоднородным, то быстрые движения проводящих тел на ее поверхности и в атмосфере были бы невозможны из-за интенсивного взаимодействия индуцированного в теле тока с этим полем. Тела двигались бы как бы в плотной вязкой среде и при этом сильно разогревались бы. Ни самолеты, ни ракеты не могли бы летать. Человек не мог бы быстро двигать ни руками, ни ногами, так как человеческое тело - неплохой проводник.

Если катушка, в которой наводится ток, неподвижна относительно соседней катушки с переменным током, как, например, у трансформатора, то и в этом случае направление индукционного тока диктуется законом сохранения энергии. Этот ток всегда направлен так, что созданное им магнитное поле стремится уменьшить изменения тока в первичной обмотке.

Природа электромагнитной индукции

Сразу после открытия Фарадеем закона электромагнитной индукции ученые стремились придать ему строгую количественную форму. Сейчас трудно представить себе те мучительные усилия, которые потребовались для формулировки этого закона на языке концепции действия на расстоянии. В конце концов были получены (Нейманом и Вебером) весьма и весьма сложные формулы, неясные по своему физическому содержанию, но все же способные количественно описывать опытные факты. В настоящее время их можно найти только в книгах по истории физики.

Истинный смысл закона электромагнитной индукции был найден Максвеллом. Он же придал закону ту простую и ясную математическую форму, базирующуюся на представлении о поле, которой сейчас пользуется весь мир.

Попробуем представить себе, с помощью какого рода рассуждений Максвелл смог усмотреть в явлении электромагнитной индукции новое фундаментальное свойство электромагнитного поля.

Допустим перед нами обыкновенный трансформатор. Включив первичную обмотку в сеть, мы немедленно получим ток в соседней вторичной обмотке, если только она замкнута. Электроны, находящиеся в проволоке обмотки, придут в движение.

Но ведь электронам закон электромагнитной индукции не известен. Короче говоря, какие силы приводят электроны в движение?

Само магнитное поле, пронизывающее катушку, этого сделать не может. Ведь магнитное поле действует исключительно на движущиеся заряды (этим-то оно и отличается от электрического), а проводник с находящимися в нем электронами неподвижен*. Что же тогда действует?

*(В действительности дело обстоит не так уж просто. И в неподвижном проводнике электроны совершают беспорядочное движение. Но средняя скорость такого движения равна нулю, так как число электронов, движущихся в любом заданном направлении, равно в среднем числу электронов, движущихся в противоположном направлении. Соответственно ток, вызванный непосредственно магнитным полем, должен быть также равен нулю.)

Кроме магнитного, на заряды, мы знаем, действует еще электрическое поле. Причем оно-то как раз может действовать и на неподвижные заряды. Это его главное свойство. Но ведь то поле, о котором у нас шла речь (электростатическое поле), создается непосредственно электрическими зарядами, а индукционный ток появляется под действием переменного магнитного поля. Уж не замешаны ли здесь какие-то новые физические поля, коль скоро идея близкодействия считается незыблемой?

Не будем спешить с выводами и при первом же затруднении искать спасения в придумывании новых полей, как в свое время выход из всех трудностей видели во введении новых сил. Ведь у нас нет никакой гарантии, что все главные свойства магнитного и электрического полей известны. В законах Кулона и Ампера, заключающих в себе основную информацию о свойствах поля, фигурируют постоянные поля. А что если у переменных полей появляются новые свойства? Будем надеяться, что идея единства электрических и магнитных явлений, плодотворная до сих пор, не откажет и дальше.

Тогда остается единственная возможность: предположить, что электроны ускоряются во вторичной обмотке электрическим полем и это поле порождается переменным магнитным полем непосредственно в пустом пространстве. Тем самым утверждается новое фундаментальное свойство магнитного поля: изменяясь во времени, оно порождает вокруг себя электрическое поле.

Теперь явление электромагнитной индукции предстает перед нами в совершенно новом свете. Главное - это процесс в пустом пространстве: рождение магнитным полем электрического. Есть ли проводящий контур (катушка) или нет, это не меняет существа дела. Проводник с его запасом свободных электронов - просто индикатор (регистратор) возникающего электрического поля: оно приводит в движение электроны в проводнике и тем самым обнаруживает себя.

Сущность явления электромагнитной индукции совсем не в появлении индукционного тока, а в возникновении электрического поля.

Вихревое электрическое поле

Возникающее при изменении магнитного поля электрическое поле имеет совсем другую структуру, чем электростатическое. Оно не связано непосредственно с электрическими зарядами, и его силовые линии не могут на них начинаться и кончаться. Они вообще нигде не начинаются и нигде не кончаются, представляя собой замкнутые линии, подобные силовым линиям магнитного поля. Это так называемое вихревое поле.

При изменении поля сильного электромагнита появляются мощные вихри электрического поля, которые можно использовать для ускорения электронов до скоростей, близких к скорости света. На этом принципе основано устройство ускорителя электронов - бетатрона. Электрический ток в бетатроне возникает непосредственно в вакуумной камере без каких-либо металлических проводников.

Устройство ускорителя электронов - бетатрона
Устройство ускорителя электронов - бетатрона

Может возникнуть вопрос: а почему, собственно, это поле называется электрическим? Ведь оно имеет другое происхождение и другую конфигурацию, чем статическое электрическое поле. Ответ прост: вихревое поле действует на заряд точно так же, как и электростатическое, а это мы считали и считаем главным свойством поля.

Еще один естественный вопрос. Ведь все сказанное в конце концов не более чем предположение, достоверность которого совсем не самоочевидна. Может быть, в действительности дело обстоит и не так? Само- то электрическое поле мы не воспринимаем и судим о его присутствии только по силам, действующим на заряженные частицы!

Но это уже по существу старое сомнение в реальности полей вообще, высказывавшееся сторонниками действия на расстоянии. Решительное его опровержение - существование электромагнитных волн, в самом процессе возникновения которых порождение электрического поля переменным магнитным полем играет фундаментальную роль.

Не все вопросы имеют смысл

Переменное магнитное поле рождает вихри электрического поля, Пусть так. Но не кажется ли вам, что одного утверждения здесь недостаточно? Хочется знать, а каков же механизм данного процесса? Нельзя ли разъяснить, как эта связь полей осуществляется в природе? И вот тут-то ваша естественная любознательность не может быть удовлетворена. Никакого механизма здесь просто нет. Закон электромагнитной индукции - это фундаментальный закон природы. Значит, основной, первичный. Действием его можно объяснить массу явлений, но сам он остается необъяснимым, просто по той причине, что нет более глубоких законов, из которых бы он вытекал в виде следствия. Во всяком случае сейчас такие законы не известны. Такова уж судьба всех основных законов: закона тяготения, закона Кулона, закона Ампера и т. д.

Мы, конечно, вольны ставить перед природой любые вопросы, но не все они имеют смысл. Так, например, можно и нужно исследовать причины различных явлений, но пытаться выяснить, почему вообще существует причинность, - бесполезно. Такова природа вещей, таков мир, в котором мы живем.

О симметрии

Порождение электрического поля магнитным Максвелл усмотрел в явлении электромагнитной индукции. Следующий и уже последний шаг в открытии основных свойств электромагнитного поля был им сделан без каких-либо указаний со стороны эксперимента.

Им руководили, надо полагать, в сущности те же соображения, которые заставили строителей Аничкова моста в Ленинграде поставить фигуры укрощаемых лошадей по обе стороны дороги, те же соображения, которые не позволяют вам перегружать вещами одну половину комнаты за счет другой. Это не что иное, как соображения симметрии, но только симметрии, понимаемой не в узком геометрическом смысле, а более широко.

Свойства симметрии глубоко заложены в природе, и, по-видимому, именно поэтому симметрия воспринимается нами как некая необходимая гармония окружающего мира.

В электромагнитных явлениях речь, конечно, идет не о той внешней красоте и изяществе, которая может быть присуща тому, что мы наблюдаем непосредственно с помощью органов чувств. Здесь речь может идти о внутренней стройности, гармоничности, которую открывает природа перед человеком, стремящимся постичь ее изначальные законы. Чувствуя эту гармонию в природе, человек, естественно, стремится усмотреть ее и там, где факты пока еще не демонстрируют ее с полной наглядностью.

Магнитное поле рождает электрическое. Не существует ли в природе обратного процесса, когда переменное электрическое поле в свою очередь порождает магнитное? Это диктуемое соображениями симметрии предположение составляет основу известной гипотезы Максвелла о токах смещения.

Ток смещения

Максвелл допустил, что такого рода процесс реально происходит в природе. Переменное электрическое поле в пустоте или внутри диэлектрика было названо им током смещения. Током названо потому, что это поле порождает магнитное поле точно так же, как и обычный ток. (Этим начинается, этим же и кончается сходство тока смещения с током проводимости.) Добавка "смещение", с одной стороны, говорит нам, что это не обычный ток, а нечто специфическое, а с другой стороны, напоминает о том отдаленном времени, когда с изменением электрического поля в пустоте связывалось смещение частиц гипотетического эфира.

Утверждение Максвелла долгое время оставалось не чем иным, как гипотезой. Причем гипотезой, которую мы сейчас с полным правом можем назвать гениальной: экспериментально была доказана ее абсолютная справедливость.

Сейчас может показаться, что ничего нет в этом предположении необычайного, поражающего самой возможностью подобной догадки. Не мог ли ее высказать любой ученый? Нет! Не надо забывать, что сама возможность этой гипотезы возникла лишь после объяснения электромагнитной индукции на основе представлений о поле. И это в то время, когда большинство известных ученых вообще не придавало самому понятию поля сколько-нибудь серьезного значения и когда до момента экспериментального доказательства его существования оставалось еще несколько десятков лет.

Максвелл не только высказал гипотезу, но тут же сформулировал точный количественный закон, определяющий величину магнитного поля в зависимости от скорости изменения поля электрического.

Ток смещения
Ток смещения

Можно только изумляться той исключительной последовательности и настойчивости, той уверенности в правоте своих идей, которые проявил Максвелл при формулировке законов электромагнитного поля. Уже с самого начала, когда Максвелл начал заниматься электромагнетизмом после успешной работы в области молекулярно-кинетической теории вещества, он сразу решил читать только экспериментальные работы и не читать теоретических, чтобы ничего предвзятого не возникало в суждении о законах этих явлений. Такой способ действий оказался удивительно плодотворным и помог Максвеллу выработать собственную цельную точку зрения на электромагнитные процессы*. Максвелл смело положил в основу количественной теории объект (поле), экспериментальное существование которого не было доказано. И далее, идя шаг за шагом, опираясь на установленные опытным путем закономерности, он пришел к конечной цели. Гипотеза о токах смещения была последним принципиальным звеном. Здесь Максвелл наделил гипотетический объект новым гипотетическим свойством, не имея на то, в отличие от предыдущих случаев, прямых экспериментальных указаний.

*(Но вряд ли такой способ может быть рекомендован сейчас для всеобщего употребления. Во-первых, в то время происходило рождение совершенно новой науки - электродинамики со своими специфическими особенностями. Рождение нового на месте, где раньше была пустота.

И, во-вторых, не каждый человек, к сожалению, Максвелл.)

Действуя подобным образом, вообще говоря, нетрудно из области науки шагнуть в область фантастики, если только с самого начала не будет угадано правильное направление. А заранее это никогда не бывает известно. Именно в выборе направления при построении теории сказываются в первую очередь способности гения.

Итак, еще одно фундаментальное, не подлежащее разложению на более элементарные, свойство электромагнитного поля было обнаружено. Переменное электрическое поле порождает в пустом пространстве магнитное поле с замкнутыми силовыми линиями (вихревое поле). Причем в растущем электрическом поле силовые линии магнитного поля образуют правый винт с полем, в отличие от левого винта для поля в явлении электромагнитной индукции. Глубокий смысл этого мы потом выясним.

Доказательство реальности гипотезы Максвелла - в существовании электромагнитных волн. Ток смещения и электромагнитная индукция целиком определяют самую возможность их существования.

Электромагнитное поле

После открытия взаимосвязи электрического и магнитного полей становится очевидным важный факт: эти поля не есть нечто обособленное, независимое одно от другого. Они - проявление единого целого, которое может быть названо электромагнитным полем.

Пусть в некоторой области пространства имеется неоднородное электрическое поле, созданное каким- либо зарядом, покоящимся относительно Земли. Магнитного поля вокруг заряда нет. Но так будет только по отношению к Земле. (В системе отсчета, связанной с Землей, как принято говорить.) Для движущегося наблюдателя неоднородное, но не меняющееся со временем поле будет представляться уже переменным. А переменное электрическое поле рождает магнитное, и движущийся наблюдатель зарегистрирует магнитное поле наряду с электрическим.

Точно так же лежащий на земле магнит создает только магнитное поле, но движущийся относительно него наблюдатель обнаружит и электрическое поле в полном соответствии с явлением электромагнитной индукции.

Значит, утверждение - в данной точке пространства существует только электрическое (или магнитное) поле, само по себе бессмысленно. Нужно добавить: по отношению к определенной системе отсчета. Отсутствие электрического поля в системе отсчета, содержащей покоящийся магнит, совсем не означает, что электрического поля нет вообще. По отношению к любой движущейся относительно магнита системе это поле может быть обнаружено.

Подобно тому как меняется окраска окружающего нас пейзажа, если рассматривать его сквозь различные цветные стекла, меняется величина и конфигурация полей при переходе от одной системы отсчета к другой.

Электромагнитное поле
Электромагнитное поле

Подобно тому как синие предметы становятся невидимыми, если их рассматривать через красное стекло, подходящим выбором системы отсчета мы можем в ряде случаев сделать магнитное поле, к примеру, ненаблюдаемым.

Разница в одном, но очень важном обстоятельстве. Мы можем отбросить цветные стекла и сказать: вот истинные цвета пейзажа, вот каков он в действительности! С полным правом один из светофильтров (атмосферу) можно объявить привилегированным. Сделать же это с системой отсчета нельзя. Все они имеют совершенно одинаковые права на существование. Поэтому нет какой-то особой конфигурации полей, имеющей абсолютную значимость, независимую от системы отсчета.

предыдущая главасодержаниеследующая глава

Приобрести пластиковые двери в Краснодаре.










© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2001-2019
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://physiclib.ru/ 'Библиотека по физике'

Рейтинг@Mail.ru
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь