Новости    Библиотека    Энциклопедия    Биографии    Ссылки    Карта сайта    О сайте


предыдущая главасодержаниеследующая глава

Время свершений

Сегодня много говорят о получении энергии с помощью Солнца, ветра, морских волн, об извлечении энергии из недр, за счет использования внутреннего тепла Земли, о приручении морских приливов и о вы* ведении электростанций за пределы атмосферы. Но пока... Пока что более 80 процентов всей электрической энергии дают обыкновенные тепловые станции - ТЭС, ГРЭС и ТЭЦ, работающие на сжигаемом топливе и выбрасывающие в атмосферу не только газы и вредные примеси, но и большую часть получаемого тепла. И у специалистов есть предположение, что в предвидимом будущем, в ближайшие 20-25 лет, существующее положение в энергетике практически не изменится. А если и изменится, то незначительно.

У нас в стране долгое время развитие сети тепловых электростанций осложнялось тем, что промышленные центры - главные потребители энергии были сосредоточены в европейской части государства, а энерготические ресурсы - преимущественно в азиатской. Поэтому топливный баланс был очень напряженным. Экономисты старались ориентировать его на большее потребление нефти и газа, а также мазута. Их легче было доставлять.

В последние годы положение изменилось. Газ и нефть все больше используются на технологические нужды промышленностью. Вместе с тем осваиваются топливные ресурсы Тюменской области, Канско-Ачинские разработки для энергетики Сибири. Значит, снова должен повыситься интерес строителей электростанций к углю. Тем более что геологические ресурсы твердого топлива почти в 30 раз превосходят запасы нефти. Но жидкое топливо во всех отношениях лучше твердого. В нем меньше вредных примесей, больше водорода. Да и сжигать жидкое топливо значительно удобнее. Не говоря уж о том, что оно не оставляет после себя гор золы и шлака. Все эти соображения привели к тому, что уже чуть не полвека назад был в принципе известен процесс получения из угля синтетического топлива. Напомню, что для превращения органической массы угля в вещество подобное нефти специалистам-химикам пришлось последовательно решать три задачи: первая заключалась в удалении лишнего кислорода, а вместе с ним и таких вредных для топлива примесей, как сера и азот; вторая - добавление в органическую массу водорода, до соотношения водорода и углерода, имеющихся в нефти; третья задача заключалась в разукрупнении больших молекул, составляющих органическую массу угля.

Все эти обстоятельства, требовавшие достаточно сложной технологии, приводили к росту себестоимости синтетического топлива. В 40-х годах способ был признан нерентабельным. Большинство предприятий реконструировали в нефтеперерабатывающие и нефтехимические заводы.

Но прошло время, и ситуация изменилась. Природное жидкое топливо дорожает. И снова на повестку дня встает синтетическое топливо. Конечно, промышленные предприятия по его производству целесообразно строить только в районах месторождений угля, позволяющих организовать дешевую открытую добычу. В нашей стране создана программа использования дешевых углей Канско-Ачинского бассейна и в этом направлении. Она предусматривает в течение 80-х годов разработку технико-экономических обоснований на сооружение первого крупного промышленного предприятия, с тем чтобы приступить к его строительству в двенадцатой пятилетке.

Ну, а что же представляет собой современная теплоэлектростанция? Давайте вспомним ее упрощенную схему: прежде всего - топка, в нее подаются топливо и окислитель. Затем - котел. В нем вода превращается в пар с температурой около 550° С. Этот температурный предел считается наиболее выгодным. Пар под высоким давлением поступает в неподвижно укрепленные металлические каналы сопла турбины. В них температура и давление пара уменьшаются, но зато увеличивается скорость движения его потока. Теперь струя пара с огромной скоростью, часто превышающей скорость звука, вырывается из сопел и, меняя направление по криволинейному каналу, давит на лопатки турбины, приводя весь ротор во вращение. На одном валу с ротором турбины сидит и ротор электрического генератора. Следовательно, приходит во вращение вся система и раскручивается до постоянной скорости, равной, как правило, 3 тысячам оборотов в минуту. Такая скорость определяется выбранным стандартом частоты переменного тока. В нашей стране она равна пятидесяти периодам в секунду. Пятьдесят периодов, помноженные на шестьдесят секунд, как раз и дают 3 тысячи оборотов в минуту. Все понятно.

Сейчас паровые турбины стали настолько быстроходны, высоко экономичны и обладают таким значительным ресурсом работы, что они вполне конкуренто способны с гидрогенераторами, работающими в значительно более щадящем режиме. Мощность современных паровых турбин в одновальном исполнении достигает 1 миллиона 200 тысяч киловатт! И это еще не предел...

После турбогенератора, совершив полезную работу, пар уже под низким давлением уходит в конденсатор, охлаждается, превращается в воду и снова насосами подается в котел. Обычно тепловые электростанции строят поблизости от крупных водных источников - рек или озер. Дело здесь в том, что на каждый килограмм конденсируемого пара приходится расходовать около 60 килограммов холодной воды. Когда впервые знакомишься с этими цифрами, то думаешь - какая расточительность! Получается, что мы сжигаем драгоценное топливо, чтобы большую часть тепла не превратить в полезные виды энергии, а выбросить в атмосферу, нагреть воздух. Невольно возникает вопрос: неужели ничего нельзя сделать, чтобы уловить это тепло и все, до последней, калории использовать по на-значению? Увы, сначала опыт, а потом и наука дают на этот вопрос категорический ответ: всю полученную от сгорания топлива тепловую энергию превратить полностью ни в какой иной вид энергии невозможно! На этом настаивает второй закон термодинамики.

В начале XIX века во Франции жил гениальный ученый Сади Карно. В 1824 году он написал любопытное сочинение - "Размышления о движущей силе огня и о машинах, способных развивать эту силу". Никого из современников его работа особенно не заинтересовала, и автору пришлось издавать ее за собственный счет.

Но прошли годы, и выводы Карно приобрели статут закона природы, одного из тех, что лежат в основе существования окружающего нас мира - от космической пылинки и до галактик. В те времена ученые представляли себе тепло в виде некоторой невесомой, не возникающей и не уничтожимой жидкости - теплорода. Перетекая от одного тела к другому, теплород охлаждал первое и нагревал второе. И чем больше его накапливалось в теле, тем горячее оно становилось. В общем, теплород был похож на воду, которая под действием сил земного притяжения способна течь только в одном направлении - с высоких гор в низины и по пути производить работу механическую. Точно так же, по мнению Карно, должен был производить механическую работу и теплород. И как для того, чтобы поднять воду на гору, нужно затратить энергию, так и для передачи тепла от менее нагретого тела к более нагретому требовалась затрата энергии. Сам по себе теплород мог переходить лишь от горячего тела к холодному.

Прошло время, и идея теплорода была отвергнута наукой. Но выводы Карно остались. Они прочно вошли в теорию и сыграли важную роль в развитии тепловых двигателей. По современным взглядам, тепловая энергия - это просто сумма энергий мельчайших частиц вещества. И в этом кроется сущность отличия тепловой энергии от энергии других видов. Частицы вещества, например горячего пара или газа, непрерывно движутся. И тепловая энергия пара не что иное, как результат этого неупорядоченного движения его частиц. А возьмем, к примеру, электрическую энергию: это результат строго упорядоченного движения электронов. Ощущаете разницу? Так же и любые другие виды энергии - результат движения всегда строго упорядоченного.

Вы понимаете, что превратить порядок в беспорядок, в хаос - проще простого. И совсем не так легко этот хаос упорядочить. Вот вам и причина, по которой так легко любой вид энергии перевести в тепловую и так трудно, а порой и невозможно, превратить тепло в иные виды энергии. Тем более полностью.

Термодинамика учит, что для получения механической энергии из тепловой нужно иметь прежде всего источник тепла, приемник с разностью температур и, кроме того, - рабочее тело. Рабочее тело переносит тепло от источника к приемнику, превращает тепловую энергию в механическую, но само по себе никаких изменений не претерпевает. Оно лишь инструмент, с помощью которого происходит преобразование энергий, и теоретически процесс этого преобразования не должен зависеть от того, какое вещество мы в качестве рабочего тела возьмем. Но это - теоретически. На практике же свойства его весьма ощутимо влияют на коэффициент полезного действия системы.

За каждый цикл рабочее тело - будь то пар или газ в турбине, продукты сгорания в двигателе внутреннего сгорания или фреон и аммиак в холодильниках - переносит часть тепла от источника к приемнику. Процесс этот происходит непременно с потерями (вспомните хорошо всем знакомый пример с трением). Из-за потерь реально получаемая механическая энергия оказывается всегда меньше разности количеств тепла, участвующих в процессе.

Коэффициент полезного действия при этом зависит от разности температур источника и приемника тепла. С приемником дело обстоит однозначно - это, в конечном счете, окружающая среда. А вот источник желательно подогреть посильнее. Например, если принять температуру окружающей среды равной 20° С, то от источника, нагретого до 120° С, из одного джоуля тепловой энергии можно получить не более 0,25 джоулей энергии механической. Семьдесят пять процентов уйдут в воздух. Если источник будет нагрет до 720° С, из одного джоуля тепловой энергии можно будет уже получить до 0,7 джоуля энергии механической.

Получается, что тепловые электростанции - устройства неэкономичные и довольно консервативные, не говоря уж обо всех других недостатках экологического характера. И все-таки их строят и будут строить. Потому что пока... они самые экономически рентабельные сооружения. Пока их энергия дешевле любой другой, и строительство ТЭС окупается раз в десять быстрее, чем строительство, например, гидроэлектростанций.

Ну а есть ли какие-нибудь перспективы их развития? Конечно, есть. Прежде всего - повышение КПД за счет увеличения начальной температуры водяного пара. Я уже говорил, что сейчас стандарт 540° С. А вот если бы повысить температуру до 1000, 1500° С? Что мешает? Прежде всего прочность материалов. Пока кет металлов, способных достаточно надежно длительное время работать при таких высоких температурах в условиях больших механических нагрузок. Вы скажете: делают же двигатели ракет из жароупорных сплавов. Но двигатели ракет работают короткое время и к тому же стоят значительно дороже. Нет, для турбин нужны качественные, но дешевые материалы, так же как для топок котлов тепловых электростанций нужно дешевое, не дефицитное топливо.

Большое значение имеет также и комплексное использование топлива и самого тепла. В нашей стране энерго-строители добились больших успехов в проектировании и сооружении тепло-электро-централей - ТЭЦ. От обычных тепловых электростанций они отличаются тем, что снабжают потребителей не только электроэнергией, но и теплом. Скажем, так: "температурный интервал" от 540° С и до 100° С используется для выработки электрической энергии, а остывшую воду отправляют для отопления. На этом примере особенно хорошо должен быть понятен выигрыш от повышения верхнего температурного предела.

ТЭЦ значительно экономичнее обычных тепловых электростанций. Коэффициент использования топлива на них приближается к 60-70 процентам, тогда как коэффициент полезного действия ТЭС не выше 40 процентов.

С каждым годом все большую роль в общем балансе энергетики играют атомные электростанции - АЭС. Строго говоря, это те же тепловые, только с другим котлом и работающие на ином топливе. Сегодня хорошо известно, что ядерные реакторы бывают двух типов: на медленных (тепловых) нейтронах и на быстрых. Последние еще называют реакторами-размножителями, или бридерами. В них при переработке ядерного горючего одного вида накапливается еще большее количество новых делящихся материалов. Применение реакторов на быстрых нейтронах, естественно, выгоднее, и потому будущее промышленных установок для АЭС за ними.

Если говорить о схеме атомной электростанции, то она распадается на две части: в одной - та же паровая турбина, электрический генератор, конденсатор, водяной насос - все, как в схеме уже известной нам тепловой электростанции. А вот другая часть резко отличается: пар производится в теплообменнике-парогенераторе или в самом реакторе за счет тепла ядерной реакции.

Первый крупный атомный реактор на быстрых нейтронах в на-шей стране был запущен в 1973 году в городе Шевченко, на берегу Каспийского моря. Здесь большое количество тепла требуется для опреснения морской воды, и потому устройство такой станции было особенно целесообразно. Еще более крупный реактор такого же типа введен в действие на Белоярской АЭС имени И. В. Курчатова, на Урале. В нем на каждый килограмм "сгоревшего" ядерного топлива воспроизводится 1,5-1,6 килограмма нового, готового к дальнейшей работе.

Однако в основном пока что на АЭС используются энергетические реакторы на медленных нейтронах. Здесь рядом с ядерным топливом в активной зоне реактора должен размещаться замедлитель. Здесь же происходят ядерные реакции, сопровождаемые выделением огромной энергии, быстрые нейтроны замедляются, и тепло отводится теплоносителем, который в следующей ступени передает свое тепло и превращает воду в пар.

Чем же лучше атомная электростанция обычной ТЭС? Прежде всего дело заключается в топливе. Знаете ли вы, сколько нужно топлива современной достаточно мощной теплоэлектростанции? Несколько железнодорожных составов в сутки! Кроме того, что надо привезти и выгрузить уголь, необходимо вывезти золу и шлак.

Сколько дополнительной работы, сколько испорченной земли! Чтобы добыть уголь, нужно вскрыть земную поверхность, устроить карьеры - Незаживающие раны. Чтобы убрать золу, нужно засыпать бесплодными отходами опять же часть земной поверхности.

А что атомная электростанция? Одной заправки реактора ядерным топливом - плутонием и природным ураном - хватает ему больше чем на год работы. И никакой золы, никакого шлака.

Выработка электроэнергии - важнейшая задача современности, но не единственная. Растет потребность в промышленном и отопительном тепле, металлургическая и химическая промышленность с каждым годом требуют все больше энергии и тепла. В нашей стране на эти нужды расходуется до 3/4 всех добываемых горючих ископаемых. Атомное тепло могло бы здесь сыграть решающую роль. Представьте себе металлургию... Ведь это редкий случай, когда топливо и руда лежат в не-посредственной близости друг от друга. Чаще их приходится куда-то доставлять. Насколько же огромная энергоемкость ядерного горючего снизила бы загрузку железных дорог! Кроме того, современный технологический процесс выплавки чугуна или стали с помощью сжигаемого органического топлива сопровождается немалыми выбросами в атмосферу углекислого газа и сернистого ангидрида. Технологическое тепло от ядерных реакторов освободит металлургические комбинаты от золы и пыли, от копоти, загазованности, завесы пыли и дыма. Количество вредных отходов, отравляющих землю, воду и воздух, уменьшится в тысячи раз.

А ведь кроме заводов по выплавке чугуна и стали существуют энергоемкие производства, где получают алюминий, цинк, осуществляют крекинг и реформинг нефти и нефтепродуктов, синтез хлорвинила, этилена и аммиака.

Не менее важно внедрение атомной энергетики и в систему теплофикации городов, создание атомных электро-централей - АТЭЦ и атомных станций теплоснабжения - ACT. Естественно, что при их постройке должны быть учтены дополнительные требования по безопасности населения и обеспечению радиоактивной чистоты на любых режимах работы реакторов. Ведь ЛТЭЦ и ACT будут сооружаться непосредственно в черте города.

Первые такие станции уже работают, обеспечивая теплом и электроэнергией дома. Особенно целесообразны они в отдаленных местах, лишенных дешевых транспортных путей, куда стоимость доставки топлива делает его поистине золотым, как, например, в северо-восточную часть Сибири.

Атомная энергетика в последние годы развивается особенно быстро. Сегодня общая мощность АЭС во всех странах еще не очень велика - она не превышает 100 миллионов киловатт. Но единичная мощность (электрическая) ядерных реакторов уже достигает 1 миллиона киловатт и больше, а в недалеком будущем она поднимается до 1,5 и 2 миллионов киловатт, а может быть, будет и еще больше.

Принцип работы гидравлических электростанций (ГЭС) понятен, наверное, каждому. С незапамятных времен научились люди использовать энергию падающей воды и стали строить водяные колеса мельниц на реках, сооружая на равнинных участках плотины, чтобы получить разность уровней. Струи воды направлялись на плицы колеса, ударяли в них и заставляли крутиться все колесо, с которым был соединен жернов. Вот и вся конструкция.

По идее сегодня все то же самое. Только вода с верхнего уровня перетекает на нижний либо по специальным трубам - турбинным трубопроводам, либо движется по водоводам, проложенным прямо в теле плотины. Под напором струи приобретают большую скорость. С силой бьют они по лопастям гидротурбины, приводя ротор во вращение. На одном валу с ротором сидит электрогенератор. Та же мельница.

В 1980 году по заданию редакции журнала "Звезда" я побывал на строительстве крупнейшей гидроэлектростанции Советского Союза - Саяно-Шушенской ГЭС- Перед тем как лететь, познакомился вкратце с основными этапами развития энергосистем в этом регионе.

После пуска крупнейших в мире ГЭС - Братской и Красноярской, после завершения создания к 1963 году единой энергосистемы Сибири - от Омска до Улан-, Удэ край получил возможность развивать промышленность, особенно энергоемкие производства.

К концу пятой пятилетки 85 процентов всей установленной мощности гидростанций приходились на европейскую часть СССР и только 15 процентов - на азиатскую. В стране работало множество карликовых энергосистем, которые состояли из электростанций небольшой и средней мощности, раздельно обслуживающих близлежащие промышленные районы. Когда экономисты подсчитали затраты на их сооружение, выяснилось, что на те же капиталовложения можно было бы создать в 2-3 раза большую мощность, если бы строить гидростанции с более крупными агрегатами.

Еще одним резервом развития энергетики оказалось создание магистральных сетей сверхвысоких напряжений- для увеличения пропускной способности линий электропередач и перехода в будущем к Единой объединенной энергосистеме. Основой для объединения энергосистем Советского Союза стали в наше время линии с напряжением в 500 и 750 киловольт. Уже ведутся работы по повышению и этого напряжения до 1150 киловольт.

Помните, какая была борьба в начале века за постоянный ток? Оказалось, что он имеет в ряде случаев немало преимуществ перед переменным, и в 1962-1965 годах была введена в эксплуатацию линия передачи постоянного тока на 800 киловольт - Волгоград - Донбасс длиной 493 километра. Начались разработки и проектирование двух таких же линий на 1500 киловольт (±750 кВ). Одна - Экибастуз - Тамбов длиной 2400 километров, вторая - из района Итата в Красноярском крае до Объединенной энергосистемы Юга протяженностью около 3500 километров*.

* ( См.: Давыдова Л. Г., Буряк А. А. Энергетика: пути развития и перспективы. М., 1981, с. 88-89)

В 1970 году самая большая Единая энергетическая система европейской части СССР охватывала Зауралье и Закавказье. Она объединяла около 400 электростанций разного типа. Тут были тепловые конденсационные и теплофикационные, гидравлические... Их общая мощность превышала 50 миллионов киловатт. В то же время начинали развиваться и другие объединенные системы: в Центральной Сибири, Северном Казахстане, Средней Азии, в Забайкалье и на Дальнем Востоке. Крупнейшая из них - объединенная система Центральной Сибири включает Иркутскую, Красноярскую, Кузбасскую, Новосибирскую, Томскую, Омскую, Бурятскую и Барнаульскую энергетические системы. В ней будут работать не только такие гиганты, как Саяно-Шушенская ГЭС, по еще и целый куст тепловых электростанций, располагающихся непосредственно у мест добычи топлива.

О строительстве Саяно-Шушенской ГЭС немало писали. Но полное впечатление о грандиозности содеянного руками человека получаешь только тогда, когда видишь плотину своими глазами.

От ее подножия и до верхней кромки вполне уместятся два Исаакиевских собора, поставленные друг на друга. Сравнение для ленинградцев достаточно наглядное. Две террасы идут вдоль всего тела плотины. По обеим ходят "БелАЗы". Снизу те, что ползут по второму горизонту, кажутся божьими коровками. А ведь это машины, каждое колесо которых в рост человека.

Два лифта последовательно поднимают большую клеть. Сначала на первый горизонт, на первую террасу, потом на вторую. Но и это еще не все. Дальше предстоит взбираться по хлипким лесенкам-этажеркам, сваренным из тонкого металлического прута и окруженным узкими металлическими дугами безопасности.

Внизу тихо, а здесь, наверху, свистит, задувает ветер, прохватывая сквозь одежду. Тяжело хлопают полотнища брезентовых шатров - бригады плотников-бетонщиков работают в укрытиях. Иначе не выдержать: не людям - бетону...

Двумя могучими ступенями уходит вниз тело плотины. Клубится водяная пыль над водосбросами. Посреди потока на нижнем бьефе чуть выступает над водой вершина одинокой красной от сурика сваи. Это знаменитая отметка. Если воткнуть в нее ножку огромного циркуля и очертить дугу радиусом в 600 метров, то пройдет эта дуга как раз по гребню плотины. Выгнувшись навстречу течению, плотина, как спиной, заткнула междугорье, подняла воду верхнего бьефа на 150 метров, затопила берега и создала море.

Почему место для плотины выбрали именно здесь? От Шагонара в Туве и до выхода Енисея в Минусинскую котловину перепад высот больше 200 метров. Енисей течет, как в каньоне. Крутые берега сопок поднимаются вверх без малого на километр. Вот тут-то, у старой заимки Черемушки у Карлова створа, и заложили плотину. Произошло это в 1968 году. В журнале стройки мы прочли историческую запись: "12 сентября 1968 года началась отсыпка перемычек котлована первой очереди строительства Саяно-Шушенской ГЭС" Первую мраморную глыбу с надписью: "Идем на вы, Енисей!" - сбросил в реку победитель социалистического соревнования водитель Илья Васильевич Кожура... Почему мраморную? Оказалось, тут мрамор вокруг. Целые горы мрамора. Да какого!

22 декабря 1980 года на стройке ГЭС состоялось большое торжество: вводился в действие пятый гидроагрегат. Чтобы представить себе это сооружение, приведу еще одно свидетельство из своей следующей поездки на строительство летом через год с лишним. Мы сидели в гостинице, когда мимо окон вверх по Енисею деловито пропыхтел буксир, толкая перед собой лихтер-баржу. На барже, перекрывая всю ее ширину, от борта к борту лежало колесо гидротурбины. Оно плыло сюда из Ле-нинграда, с Ленинградского Металлического завода, которому принадлежит ведущая роль в отечественном гидротурбоетроении. Еще в 1928 году на заводе была организована гидротурбинная лаборатория со специальными стендами для экспериментальных исследований моделей мощных турбин.

При диаметре рабочего колеса турбины 6,5 метра и при напоре воды, падающей с высоты в 194 метра, каждая гидротурбина будет развивать мощность примерно в 650 тысяч киловатт. Для сравнения напомню, что это мощность десяти Волховских гидростанций. Она сравнима со всей мощностью Днепрогэса.

Митинг шел прямо в машинном зале электростанции. Железобетонный каркас, постоянная крыша, а вот стены пока временные - из профилированных металлических листов. Но тепло и светло. Народу собралось много. Приехали гости, пресса, телевидение и кинохроника. Посредине круглая металлическая площадка размером чуть меньше цирковой арены. Это крышка колодца, в котором работает агрегат. На белом колпаке - выразительная цифра "5" и металлическая пластинка с надписью: "ЛМЗ - гидравлическая турбина, "Электросила"- генератор трехфазного тока". Табличка означает содружество двух крупнейших ленинградских предприятий.

Строго говоря, пятый агрегат поставили под нагрузку еще вчера. Поэтому сегодня никакой особенной нервозности нет. К тому же ведь и не первый, а пятый..,

Глубоко внизу крутится турбина. Ровное гудение доносится из колодца, служит фоном уверенности, солидности, что ли. Ведь десять Волховстроев в одном агрегате!

Советское энергомашиностроение уверенно лидирует в мире, ставя на серийное изготовление уникальные конструкции. Мощность и скорость вращения гидрогенераторов устанавливаются заводами - изготовителями гидротурбин и зависят от напора и расхода воды. Принципиально схема турбины и гидрогенератора за последние годы не изменилась, но каждая новая машина требует решения сложного комплекса технических проблем. Тут и усовершенствование компоновки гидрогенератора, и создание наиболее рациональной системы вентиляции и охлаждения, применение новой изоляции и новых типов обмоток, снижение добавочных потерь в зонах перегрева и многие другие вопросы. Например, одно время было никак не решить вопрос о нагрузке на пяту опорного подшипника-подпятника. Следовало так его сконструировать, чтобы он спокойно нес на себе нагрузку до 3500 тонн. В мире подобных аналогов не имелось. И снова выручила ленинградская "Электросила". В содружестве с инженерами производственного объединения "Уралэлектротяжмаш" был сконструирован оригинальный подпятник, обеспечивший спокойную работу гигантской машины.

Успехи гидрогенераторостроителей привели к тому, что наши заводы не только выполняют заказы по постройке машин на экспорт, но и производят разработку проектов для зарубежных предприятий. Мощное энергомашиностроение - ведущая отрасль советской промышленности.

предыдущая главасодержаниеследующая глава










© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2001-2019
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://physiclib.ru/ 'Библиотека по физике'

Рейтинг@Mail.ru
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь