Новости    Библиотека    Энциклопедия    Биографии    Ссылки    Карта сайта    О сайте


предыдущая главасодержаниеследующая глава

Новая роль

Ребенок, собирая картинку из разноцветных шариков, кладет их в специальные лунки. Художник, создающий мозаичную картину, скрепляет ее отдельные детали цементом.

Физик тоже создает свою картину мира, складывая атомы и ядра атомов из разных совокупностей элементарных частиц. Но какая картина может считаться законченной, если отдельные ее компоненты ничем не скреплены? Где цемент, где тот клей, который скрепляет протоны и нейтроны в ядрах? Какие силы удерживают их вместе?

Может быть, это хорошо знакомые нам гравитационные силы? Нет, силам взаимного тяготения не удержать протоны и нейтроны в ядрах, их массы слишком малы. Электромагнитные силы тоже не подходят на эту роль: одинаково заряженные протоны разлетелись бы в разные стороны. А что удерживало бы в этом случае нейтроны?

После открытия атомного ядра Резерфорд стремился проникнуть в тайну сил, действующих внутри открытого им микрообъекта. Он внимательно наблюдал за "встречей" альфа-частиц с ядрами. "Раз эти силы не были обнаружены раньше, - размышлял Резерфорд, - значит, они появляются только на малых расстояниях. Но как близко можно почувствовать их влияние?"

Опыт следовал за опытом. Проходили годы, но однозначного ответа на вопрос все еще не было. Ничего особенного не удалось заметить и при сближении атомных разведчиков с тяжелыми ядрами на расстояние до 10-12 сантиметра. Отмечалось лишь тривиальное электростатическое отталкивание. Точно такое, как у одинаково заряженных шариков при демонстрации в школе закона Кулона.

И вдруг большая радость! Альфа-частицы, оказавшись на расстоянии, в десять раз более близком (равном 10-13см) к ядрам водорода - протонам, встретили необычный прием. Их взаимодействие не было электростатическим. Оно происходило совсем по-иному. Пространство на расстоянии 10-13 сантиметра находится под контролем ядерных сил.

За один знаменательный 1924 год Резерфорду с сотрудниками удалось расщепить ядра почти всех легких элементов. И всегда, во всех случаях ученые наблюдали появление протонов с энергией, значительно большей, чем передавали им альфа-частицы.

Но почему - большей? Неужели все-таки нарушается закон сохранения энергии?

Ничего подобного. Просто-напросто это результат действия ядерных сил. Протоны получали дополнительный импульс за счет внутренних энергетических ресурсов ядра. За счет той самой ядерной энергии, которую мы уже сегодня используем в атомных электростанциях.

Так был обнаружен "цемент", с помощью которого природа создает мозаику разных веществ.

Ядерные силы в тысячу раз интенсивнее электромагнитных. Они одинаково легко удерживают вместе один протон и один нейтрон в ядре изотопа водорода - дейтерия и сотни протонов, сотни нейтронов в тяжелых ядрах, подобных ядрам урана.

Итак, физики открыли новые силы в природе и придумали им название. Но это отнюдь не значит, что ученые тотчас же поняли их сущность, что они сразу же выяснили всю их подноготную. Открытые силы назвали "ядерными". Но разве можно по одной только фамилии Иванов догадаться, что это за человек?

Впрочем, столкнувшись с незнакомым вам Ивановым, вы, по крайней мере, твердо уверены, что это все- таки человек. А вот физическая основа ядерных сил до сих пор неизвестна. На проблему ядерных сил со времен Резерфорда было потрачено "больше человеко-часов, чем на любой другой научный вопрос в истории человечества". Ученым удалось установить многие их свойства, но строгой теории ядерных сил до сих пор не существует.

Физики пока еще не в состоянии облечь в точную математическую форму это необыкновенно сильное влечение протонов и нейтронов друг к другу. Всемогущая математика в данном случае бессильна.

Нельзя ли хотя бы представить себе механизм действия ядерных сил? Но как пытаться описывать новое явление в микромире, когда нет ни теории, ни экспериментальных результатов?

Изучая макромир, физики нередко прибегают к аналогии. А применим ли этот метод в ядерных процессах?

Аналогия опирается на принцип материального единства мира. Как ни удивительны элементарные частицы, все они материальны по своей природе. Все они обладают такими свойствами объектов макромира, как движение, энергия и т. д.

Опираясь на метод аналогии, академик И. Тамм и профессор Д. Иваненко еще в 1934 году предположили, что ядерные взаимодействия, по-видимому, передаются с помощью электрона и нейтрино, которые испускаются при бета-распаде ядер. Примерно так же, как заряженные тела действуют друг на друга, обмениваясь частицами электромагнитного излучения - фотонами.

Преподаватель университета в городе Осака двадцативосьмилетний теоретик Хидэки Юкава подхватил эту идею и сделал новый, чрезвычайно смелый шаг. Через год он написал новую роль для не открытой еще элементарной частицы - переносчицы ядерных сил. Подробно описывая свойства, которыми должна обладать претендентка на вакантное место, японский теоретик предложил экспериментаторам поискать ее в космических лучах.

До сих пор физики сперва открывали очередную элементарную частицу, а потом уже находили ей место в общей картине строения материи. Теперь же впервые экспериментаторы начали работу, имея точное задание теоретиков.

В то время ученые как раз всерьез заинтересовались космическим излучением, возникающим в верхних слоях атмосферы Земли. Они изучали механизм взаимодействия космических лучей с веществом атмосферы, пытались измерить их энергию с помощью камеры Вильсона.

Камера Вильсона - интересный, простой и полезный прибор. В ней пересыщенный пар охлаждается и в виде капелек тумана оседает на ионах, которые оставляет за собой пролетающая через камеру заряженная частица. Созданный еще в 1911 году Ч. Вильсоном, этот прибор быстро приобрел большую популярность и стал "высшим кассационным судом в физике". В самом деле, раньше можно было наблюдать за поведением лишь больших масс частиц. Камера Вильсона позволила сделать видимыми и сфотографировать следы отдельных жителей микромира.


"Закинули" экспериментаторы свой "невод" - камеру Вильсона - в космические лучи и через год "вытащили" незнакомую частицу. Она очень походила на ту, о которой писал Юкава. И массу имела как раз промежуточную между массой протона и электрона. Поэтому назвали ее мезоном от греческого слова "мезос", что означает - средний.

Возликовали физики, но недолго длилась их радость. Рассмотрели они новую частицу повнимательней и ахнули от удивления. Мю-мезон, так стали называть новую частицу, оказался сверхпроникающей частицей космического излучения. Он очень неохотно общался с нуклонами. И благодаря этому совершенно не годился на роль частиц Юкавы.

Вот ведь как бывает в физике - как в жизни. Ищешь одно, а находишь другое. Но зачем существуют эти мю-мезоны? Какая у них "специальность"? Куда девать мезонный кирпичик, подаренный щедрой природой?

Ситуация, в которой оказались физики, напоминала затруднительное положение любознательной крыловской мартышки, раздобывшей очки, но не знающей, что с ними делать.

Почти четыре десятилетия пытаются физики выявить особое дарование мю-мезона, но все их усилия пока что напрасны. Жизнь этой частицы изучена до мельчайших подробностей. Появилось даже новое научное направление, имеющее практическое применение, - мезохимия. Но какой же хитрый этот мю-мезон! Кто он? Неизвестно. Известно лишь, что в микромире он проявляет себя только в двести раз более массивным исполнителем роли электрона. Загадка мю-мезона до сих пор не разгадана.


Прошло двенадцать лет, И вот однажды при столкновении быстрых протонов с ядрами атомов обнаружилась еще одна частица. Тяжелее предыдущей, она имела все данные, которые позволяли ей претендовать на роль частицы Юкавы. Неравнодушная к нуклонам, новая частица в отличие от мю-мезонов бурно реагировала с атомными ядрами.

Восторгу физиков не было предела. Открытая частица - ее назвали пи-мезоном - полностью соответствовала тому образу, который ученые составили о переносчиках ядерных сил. Непрерывно перекидываясь мезонами, нуклоны в ядре оказываются связанными в единую группу так же, как связаны между собой артисты цирка - жонглеры, перебрасывающиеся одновременно несколькими предметами. Но если жонглеры в цирке получают вполне стабильный реквизит, то нуклоны перебрасываются мезонами, которые сами мгновенно испускают и поглощают. Нейтроны и протоны обмениваются между собой мезонами с положительным и отрицательным зарядом, а протоны с протонами и нейтроны с нейтронами - нейтральными...

В 1947 году открытие это завершилось вручением Хидэки Юкава Нобелевской премии.

К 1950 году мир представлялся устроенным из протонов, нейтронов, электронов, мю-мезонов, пи-мезонов, фотонов. Ученые знали, как из этих кирпичиков складывается гигантская пирамида макромира. И понимали, почему не разваливается на элементарные частицы любой кусок вещества.

Не знали только одного: куда приложить мю-мезонный кирпичик?

предыдущая главасодержаниеследующая глава










© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2001-2019
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://physiclib.ru/ 'Библиотека по физике'

Рейтинг@Mail.ru
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь