За окном машины неожиданно возник и так же быстро пропал старинный русский город Серпухов. Еще десять минут езды - и перед нами город физиков Протвино, где в ночь на 14 октября 1967 года впервые заработал самый мощный в то время ускоритель элементарных частиц. Семьдесят миллиардов электрон- вольт энергии набирают протоны, мчащиеся в его кольцевой вакуумной камере длиной около полутора километров!
В кольцевом зале, скрытом от человеческих глаз и засыпанном землей для защиты от радиации, собран магнит ускорителя. С его помощью физики удерживают внутри ускорителя сотни миллиардов ядерных снарядов колоссальной энергии, скорость которых почти достигает скорости света.
Сто двадцать блоков, каждый длиной 11 метров, с общим весом около 30 тысяч тонн - вот главный "диспетчер", следящий за правильным движением протонов.
Для сравнения скажем, что магнит Дубненского ускорителя на энергию в 10 миллиардов электрон-вольт (10 Гэв) вдвое тяжелее. Это объясняется тем, что "диспетчер" Серпуховского ускорителя более высокой "квалификации", так как использует принцип жесткой фокусировки частиц. Как хоккеист ведет шайбу, ударяя по ней клюшкой то справа, то слева и не давая шайбе уклониться от намеченного направления, так и магнит Серпуховской машины ведет ускоряемые им протоны по узенькой кольцевой дорожке шириной всего 16 сантиметров. Отсюда и происходит выигрыш в массе самого магнита.
Но такое отличное владение протоном возможно лишь при одном непременном условии: относительные отклонения значений магнитного поля от блока к блоку не должны превышать величины 10-4(одной десятитысячной).
Мы до сих пор восхищаемся искусством строителей пирамид Древнего Египта. Нас поражает мастерство древних каменотесов. Огромные блоки так тщательно пригнаны друг к другу, что между ними не вставить и листка бумаги. И все это уживалось с небрежностью отделки внутренних стен, сборки саркофагов - тех мест, которые никто не видит.
Здесь же, в ускорителе, не сделаешь небрежно то, что не видно: машина в противном случае просто не заработает. А ускоритель заработал сразу, с первого включения. Значит, строители добились отклонения значений магнитного поля у разных блоков меньше одной десятитысячной. Хотя известно, что даже сталь из разных плавок имеет несколько большее отличие в магнитных свойствах.
Каждый из 120 магнитных блоков собирался из тщательно перемешанных стальных листов толщиной 2 миллиметра, полученных из разных плавок. В результате магнитных измерений выбрали оптимальный вариант расстановки магнитных блоков по кольцу ускорителя. Для устойчивой работы все магнитные блоки весом по 240 тонн надо было установить с точностью до 100 микрон. Это проблема, которую даже представить себе трудно. Но и она была решена с помощью специальных геодезических методов.
В конце концов все трудности остались позади, и физики получили новый сверхмощный "микроскоп" для изучения микромира. На что же они должны были его направить?
Не надо забывать, что теория элементарных частиц, как дом на фундамент, опирается на несколько основных аксиом и постулатов, представляющих собой естественное обобщение квантовой механики и теории относительности. Поэтому и решено было с помощью нового "микроскопа" прежде всего проверить самые основы теории.
Еще в 1956 году академик Н. Боголюбов, ныне директор ОИЯИ, доказал, что так называемые дисперсионные соотношения - связывающие величины, непосредственно измеряемые на опыте, - вытекают из общих принципов современной теории.
Какая уникальная возможность! При измерении полной вероятности взаимодействия частицы с веществом и вероятности рассеяния ее на малые углы одновременно проверялись основные постулаты теории. Протягивалась тем самым ниточка связи между фундаментом современной физики и экспериментами в мире элементарных частиц.
Спустя два года член-корреспондент АН СССР И. Померанчук получил еще одно из фундаментальных соотношений. Теорема Померанчука тоже связывала исходные аксиомы с экспериментом.
На Дубненском синхрофазотроне дисперсионные соотношения были проверены до энергии 10 Гэв. Никаких противоречий там не обнаружилось, но кое-что было пока неясно. Теорему Померанчука опыт не подтверждал, но это никого не удивляло. В теореме говорилось, что при больших энергиях частицы и античастицы должны с одинаковой вероятностью взаимодействовать с одной и той же мишенью. Но какую область энергий надо считать достаточно высокой, было неизвестно. Оставалась надежда, что теорема подтвердится в будущих экспериментах.
Понятно, с каким нетерпением ждали и теоретики и экспериментаторы вступления в строй нового, более мощного ускорителя. Серпуховской гигант предоставлял в их распоряжение не только протоны с рекордной энергией. Это была настоящая фабрика для производства уникальной продукции вторичных частиц: пи- и ка-мезонов, антипротонов, нейтрино.
Основы теории можно было проверить сразу на разных сортах частиц. И одним из самых удобных объектов для этой цели оказались уже известные нам удивительные нейтральные ка-мезоны. Они рождались при столкновении мчащихся со скоростью света протонов с мишенью, находящейся прямо в вакуумной камере ускорителя. А мгновение спустя на выходе 50-метрового канала появлялись наши старые знакомые, долгоживущие нейтральные ка-мезоны.
Эти частицы, как говорят физики, - идеальный "подарок" природы для проверки теоремы Померанчука. Каждая из них - определенный тип смеси частицы и античастицы, ка-ноль-мезона и анти-ка-ноль-мезона. Теперь достаточно было поставить на их пути вещество, и в одном эксперименте физики могли сравнить, как ведут себя представители мира и антимира.
В конце августа 1970 года в Киев на конференцию по физике высоких энергий съехались ученые из сорока стран. В живописном центральном районе города, в зале Октябрьского Дворца культуры собрались те, кого волнует дальнейшее развитие физики элементарных частиц.
Пятьсот докладов предстояло прослушать участникам этого крупнейшего форума ученых. Но самыми притягательными, самыми интересными были доклады, сообщавшие результаты экспериментов, выполненных в Серпухове по проверке дисперсионных соотношений и теоремы Померанчука.
Физик-экспериментатор член-корреспондент АН СССР Ю. Прокошкин рассказал о результатах опытов по взаимодействию с нуклонами протонов и антипротонов, пи- плюс-мезонов и пи-минус-мезонов, ка-плюс-мезонов и ка-минус-мезонов с энергией до 70 миллиардов электрон-вольт.
Большой интерес вызвали экспериментальные результаты, полученные в работе с нейтральными ка-ме-зонами группой доктора физико-математических наук И. Савина из лаборатории высоких энергий ОИЯИ. Высокую оценку дал им крупнейший американский физик-теоретик Янг, выступавший в дискуссии по докладу.
Участники конференции аплодисментами встретили появление на трибуне доктора физико-математических наук В. Никитина. Под его руководством ученые Дубны на серпуховской установке провели один из первых опытов по проверке фундаментальных основ теории.
Нетрудно понять, почему серпуховские эксперименты вызвали такой интерес ученых всего мира. Председатель оргкомитета конференции академик Н. Боголюбов сказал: "Многие важные выводы теоретиков делались до сих пор на основе экспериментальных фактов, добытых с помощью ускорителей с энергией протонов до 30 миллиардов электрон-вольт. Какие закономерности проявляются при гораздо больших энергиях, куда пошли экспериментальные кривые? Не опрокинут ли они устои теории?"
Однако на этот раз сюрпризов не было. Обсуждение результатов, полученных в Серпухове, убедило физиков, что аксиомы, лежащие в основе квантовой теории и теории относительности, подходят и для описания элементарных частиц.