Библиотека по физике Библиотека по физике
Новости    Библиотека    Энциклопедия    Биографии    Ссылки    Карта сайта    О сайте


предыдущая главасодержаниеследующая глава

X. Природные вещества

Изучение веществ, содержащихся в живых организмах, привело в начале XIX в. к возникновению органической химии. Однако постепенно эта наука свелась в основном к исследованию многочисленных соединений углерода. Приблизительно в то же время возникла и биохимия, которая сосредоточила свое внимание преимущественно на сложных макромолекулах, по своему строению и свойствам резко отличающихся от простых соединений, с которыми имеет дело обычная химия. Промежуточное место между этими двумя областями химии занимает так называемая биоорганическая химия. Она изучает природные соединения, которые относятся к числу сравнительно низкомолекулярных, физиологически активных веществ и синтезируются в живых организмах*. В этой области работало немало известных ученых, труды которых значительно обогатили науку.

* (Эти определения упрощены - биоорганическая химия изучает вещества, лежащие в основе процессов жизнедеятельности, и их биологические функции. Биополимеры (в том числе белки и нуклеиновые кислоты) - основные объекты ее исследования.- Прим. ред.)

В конце прошлого века химики вторглись в обширную группу алициклических соединений (органических молекул циклического строения). Одним из пионеров в исследовании этих соединений является немецкий химик-органик Отто Баллах, который достиг больших успехов в изучении терпенов - весьма интересных представителей названной группы.

Эти вещества содержатся во многих растениях и входят в состав эфирных масел, широко использовавшихся еще в древности. С развитием современной химии удалось выделить в чистом виде значительное число таких соединений. До О. Валлаха, который начал заниматься этим вопросом в 1884 г., было описано свыше ста различных терпенов. А спустя шесть лет осталось не исследовано всего восемь терпенов; впоследствии к ним добавилось еще несколько вновь открытых. Баллах установил, что большинство из описанных терпенов химически идентично. Занимаясь их выделением, он исследовал их химические свойства, а также способы превращения одних терпенов в другие. Как обнаружилось, каждый из видов терпенов отличается своим особым ароматом, что делало их очень ценными для парфюмерной промышленности.

Плодотворная деятельность Отто Валлаха увенчалась созданием отдельного раздела в химии. За исследования терпенов Баллах был удостоен в 1910 г. Нобелевской премии по химии.

В исследовании и классификации так называемых высших терпенов большая заслуга принадлежит швейцарскому химику-органику, профессору Федерального технического института в Цюрихе Леопольду Стефану Ружичке. Его работы привлекли, в частности, внимание производителей духов.

Старейшая в мире фирма "Хартман и Реймер" использовала в 1916 г. результаты его научной работы, выполненной на соискание ученой степени. Год спустя фирма "Сиба" в Базеле заинтересовалась синтезированным Ружичкой веществом, напоминающим хинин. Однако основные открытия Ружички были связаны с исследованиями мускуса и цибетина, веществ с острым запахом, выделяемым некоторыми животными, особенно самцами.

В 1926 г. Ружичка установил строение мускона и синтезировал цибетон. Первое из этих соединений представляет собой кольцо из 15, а второе - из 17 атомов углерода. До этого существование устойчивых соединений с такими большими кольцами считалось невозможным. Ружичка пошел дальше, синтезировав еще более крупные кольца, включающие до 34 атомов углерода. При этом он сделал весьма интересное наблюдение: с увеличением кольца изменялся аромат. При 5-8 атомах углерода в кольце ощущался запах миндаля, тмина и мяты; при 10-12 - камфоры, а при 14-18 - мускуса. Последний выделяется многими животными и выполняет сигнальную функцию в периоды размножения. Нет ничего удивительного, что эти пахучие вещества давно интересовали парфюмерную промышленность; поэтому открытия Ружички особенно порадовали производителей парфюмерных изделий,

За свои работы в области высших терпенов и полиметиленов Ружичка был награжден в 1939 г. Нобелевской премией по химии. Вместе с ним премию получил немецкий биохимик Адольф Бутенандт - за исследование половых гормонов, которое было неразрывно связано с работой Ружички. Поскольку в Европе шла война, никто из них не смог выехать в Стокгольм*. Ружичке медаль и грамота были переданы шведским послом в Берне, и лишь через шесть лет, в 1945 г., он посетил Стокгольм, чтобы прочесть свою Нобелевскую лекцию.

* (А. Бутенандту руководство нацистской Германии приказало отказаться от премии. Он получил ее только в 1949 г, (см. примечание на с. 202).- Прим. ред. )

Существует большая группа веществ растительного и животного происхождения, структура которых включает известное циклопентанпергидрофенантреновое ядро. Это стероиды. Указанная структура встречается в самых различных биологически активных веществах: витаминах, желчных кислотах, половых гормонах, растительных ядах, алкалоидах и многих других. В этой обширной области биоорганической химии работали многие ученые, среди которых немало лауреатов Нобелевской премии.

В 1927 г. Нобелевский комитет по химии решил не присуждать премии (по уставу Нобелевского фонда ее присуждение может быть задержано на год). Это позволило наградить в 1928 г. двух ученых, пионеров в исследованиях стероидов: Генриха Виланда - за исследование строения жёлчных кислот и связанных с ними веществ и Адольфа Виндауса - за изучение строения стеринов и их связи с витаминами группы D.

Жёлчные кислоты были объектом исследования химиков с начала XIX в. Они являются частью секрета печени, который выливается в пищеварительный тракт. До исследований Виланда почти ничего не было известно об их структуре и связях между различными кислотами. Он приступил к исследованию этих проблем в 1912 г., а к 1932 г. полностью исследовал их структуру, установив, что они имеют углеродный скелет стероидного характера.

Виланд умел находить самые неожиданные объекты для исследований. Так, он занялся изучением пигментов, обусловливающих окраски крыльев бабочек, и открыл интересную группу птериновых соединений. В шкуре лягушки он обнаружил сильный яд буфоталин (родственный жёлчным кислотам), который стал использоваться как ценное лекарство. Весь творческий путь Генриха Виланда полон подобных открытий, и в 1927 г. он был удостоен Нобелевской премии по химии.

Еще в начале нашего столетия Адольф Виндаус по совету своего учителя Генриха Килиани занялся исследованием холестерина, о котором в то время мало что было известно. Это соединение относится к группе стеринов, являющихся спиртами сложного строения. Название "стерины" происходит от греческого корня и в переводе означает "твердый". Исследования показали, что стерины структурно связаны с жёлчными кислотами. Соединения обеих групп имеют в своей основе фенантрен и циклопентан, которые образуют ядро. К этому ядру присоединяются различные другие группы соединений; в результате создается богатое разнообразие структур.

Виндаус изучал также растительные гликозиды, которые входят в состав многих лекарств, прежде всего сердечных стимуляторов. Он показал, как эргостерин (вещество, содержащееся в дрожжах) под действием ультрафиолетовых лучей превращается в витамин D. Это открытие имело большое значение не только для выяснения структуры этого витамина, но и для организации его промышленного производства.

Исследования Виндауса во многих отношениях переплетаются с работой Виланда, поэтому вполне закономерно одновременное присуждение им в 1928 г. Нобелевской премии по химии. Адольф Виндаус был удостоен этой награды за исследование стеринов и их связи с витаминами.

Исключительно важную группу природных соединений образуют углеводы. Под этим названием объединяются различные сахара и их полимеры. Название "углеводы" возникло в 40-е годы XIX в., когда был установлен количественный состав некоторых из этих соединений. Они состоят из углерода, водорода и кислорода, содержащихся в таком соотношении, что наводило на мысль о наличии молекулы воды на каждый атом углерода. Позднее стало ясно, что никакой воды нет, но название сохранилось*.

* (Термин "углеводы" был введен в 1844 г. профессором Тартуского университета Карлом Эрнестовичем Шмидтом.- Прим. ред.)

В 1925 г. английский ученый Уолтер Нормен Хоуорс, профессор Бирмингемского университета, после многолетних исследований показал, что моносахариды (простейшие сахара) имеют кольцевидное строение. В качестве их исходных структур можно рассматривать кольца пирана и фурана. Кольцо пирана - шестиатомное, построенное из 5 атомов углерода и 1 атома кислорода. В пятиатомном кольце фурана имеется 4 атома углерода и 1 атом кислорода. Добавляя к этим кольцевидным структурам гидроксильные группы и еще атомы углерода, можно получать основные моносахариды.

В 1928 г. венгерский химик Альберт Сент-Дьёрдьи, исследуя экстракты, выделенные из растений, получил вещество, которое назвал гексуроновой кислотой. Это вещество напоминало углеводы, и поэтому, посетив несколько позже Бирмингемский университет, Сент-Дьёрдьи предложил Хоуорсу заняться его изучением. Это был витамин С. Методом рентгеноструктурного анализа и другими способами английский ученый установил структуру указанного вещества и синтезировал его. Это чрезвычайно важное для живого организма соединение похоже на так называемые сахарные кислоты.

Метод рентгеноструктурного анализа Хоуорс использовал и для исследования других моносахаридов; в результате было установлено, что они имеют именно такую структуру, как он и предполагал. Определение кольцевидного строения моносахаридов позволило объяснить процесс их соединения в дисахариды, к каковым относятся обычный сахар, молочный сахар и другие соединения. Далее английский химик показал, как моносахариды соединяются в длинные цепи, образуя такие биополимеры, как крахмал, гликоген, целлюлоза и т. д.

Исследования Хоуорсом углеводов и витамина С сыграли огромную роль в развитии химии этих соединений. Это принесло английскому ученому широкую известность в научных кругах, и в 1937 г. он был удостоен Нобелевской премии по химии, разделив ее с швейцарским исследователем витаминов Паулем Каррером.

Существует группа органических веществ под названием "алкалоиды". Многие из них ядовиты и оказывают наркотическое действие. Содержащие их лекарственные растения известны с древнейших времен. В начале XIX в. были выделены в кристаллической форме первые такие соединения; в соответствии с их химическими свойствами они были названы алкалоидами, т. е. "щелочеподобными".

Первые опыты производились с опиумом, и в 1817 г. из него был выделен морфин. После этого были открыты стрихнин, хинин, кофеин, кокаин и т. д. Ныне известно около 1000 алкалоидов, которые в зависимости от своего строения делятся на несколько групп.

С исследованием алкалоидов связано имя английского ученого Роберта Робинсона. В частности, он изучил такие алкалоиды более сложного строения, как морфин и стрихнин. В их молекулах содержится соответственно 40 и 47 атомов; поэтому, чтобы определить их структуру, потребовались немалые усилия. Робинсон успешно справился с этой задачей, хотя на различных этапах работы приходилось делать выбор между десятками возможных структурных формул. Затем он приступил к изучению ряда других алкалоидов. На основании проведенных исследований он разработал теорию этих соединений в растительных клетках.

Английский химик занимался исследованиями и в других областях. Изучая структуру половых гормонов, Робинсон синтезировал искусственные вещества, оказывающие подобное действие. Рассматривая механизм электрохимических реакций между органическими молекулами, он внес вклад в химическую теорию. Разнообразная научная деятельность Роберта Робинсона (протекавшая преимущественно в Оксфордском университете) увенчалась присуждением ему в 1947 г. Нобелевской премии по химии. Этой награды он был удостоен за исследование биологически активных растительных веществ, в частности алкалоидов.

Кроме того, еще два исследователя стали лауреатами Нобелевской премии за открытия в области природных соединений.

Это были Джон Уоркап Корнфорт, сотрудник Робинсона, и Владимир Прелог, сотрудник и преемник Ружички в Федеральном техническом институте в Цюрихе.

Главные работы Д. Корнфорта связаны с проблемой биосинтеза холестерина. Это вещество играет важную роль в процессе обмена веществ и в образовании гормонов в организме человека. Удачно применяя метод меченых атомов, ученый показал, как осуществляется синтез сложного соединения в более примитивном организме. Исследования были далеко не простыми, так как каждый этап биосинтеза состоит из серии сложных реакций, связанных с изменением и модификацией молекулярных структур. За эти и другие исследования Корнфорт был избран членом Лондонского королевского общества и получил множество наград и отличий. Очередным выражением признания его заслуг было присуждение ему в 1975 г. Нобелевской премии по химии.

Другим лауреатом того же года стал Владимир Прелог, известный своими мастерски выполненными исследованиями в области стереохимии органических соединений. Вместе с другими учеными он разработал стерео-химическую номенклатуру, принятую сейчас во всем мире. Крупным его достижением является синтез углеводорода адамантана, который по своей структуре напоминает кристаллическую решетку алмаза.

В 60-е годы Владимир Прелог стал заниматься изучением обмена веществ у микроорганизмов и участвующих в нем соединений. Он объяснил механизм действия ряда антибиотиков, которые, блокируя действие некоторых веществ, нарушают последовательность реакций обмена. Прелог выделил ряд исключительно сложных комплексных органических соединений, с помощью которых микроорганизмы извлекают из окружающей среды такие необходимые для обеспечения жизненных процессов элементы, как калий, железо, бор и другие.

Обширная научная деятельность Прелога завоевала ему признание научной общественности. Он был избран иностранным членом Академии наук СССР, Лондонского королевского общества, Национальной академии наук США, Американской академии наук и искусств и многих других научных обществ и академий*.

* (В. Прелог внес большой вклад в теорию органической химии. Он ввел понятие "хиральность", сформулировал в 1950 г. правило о предпочтительной конформации оптически активных веществ в ходе их превращений (правило Прелога), опроверг (совместно с Л. Ружичкой) правило Бредта, запрещающее существование С6-циклов с двойной связью при углероде, находящемся у мостика, и т. д.- Прим. ред.)

В 1975 г. В. Прелог был удостоен Нобелевской премии по химии за исследование физиологически активных низкомолекулярных соединений. Вместе с ним был награжден и Д. Корнфорт. Награждение названных ученых символизировало очередное признание биоорганической химии, являющейся связующим звеном между химией и биологией и одной из важных областей современной науки.

Витамины

В 1881 г. русский ученый Николай Иванович Лунин провел интересные эксперименты с пищевыми веществами: извлекая белки, жиры, углеводы и соли из молока, он кормил этой смесью лабораторных мышей. Несмотря на то что пища бралась, казалось бы, из самого полноценного продукта, животные чахли и умирали. Из этого Лунин, совершенно естественно, сделал вывод, что для удовлетворения потребностей организма кроме указанных веществ необходимы еще какие-то. Однако его публикация, как и работы многих других ученых на эту тему, не обратила на себя особого внимания.

Как выяснилось впоследствии, с этими веществами связан ряд заболеваний, в лечении которых в конце прошлого века врачи испытывали затруднения.

К ним относится, в частности, болезнь бери-бери, которая была серьезной проблемой для стран Юго-Восточной Азии, и особенно для Индонезии, которая была в то время голландской колонией.

В 1886 г. голландское правительство направило на остров Яву известного патологоанатома Корнелиса Пе-кельхаринга и невролога Клеменса Винклера из Утрехтского университета. Их помощником был назначен военный врач Христиан Эйкман, уже работавший в тропических районах. В то время бактериология переживала расцвет, и, совершенно естественно, голландские ученые занялись поисками микроба, вызывающего бери-бери. Пекельхаринг и Винклер, не обнаружив ничего заслуживающего внимания, вскоре уехали, оставив Эйкмана в Батавии (Джакарта) для продолжения работы. Он пробыл там 10 лет, проводя многочисленные исследования, связанные с тропической медициной, и продолжая поиски причины болезни бери-бери. Его исследования завершились интересным открытием.

Тайна этой болезни была разгадана совершенно случайно. Лаборатория в Батавии имела небольшое хозяйство по разведению кур. Птицы находились на довольно однообразной рисовой диете и постепенно становились жертвой болезни, клиническая картина которой весьма напоминала бери-бери. Интересовавшийся этим заболеванием Эйкман сразу уловил сходство и занялся экспериментами. Он добавил в пищу кур немного рисовых отрубей, и они быстро выздоровели. Оказалось, что при полировке риса, когда зерно очищается от оболочки, теряется какое-то ценное вещество, и местные жители, питавшиеся преимущественно рисом, становились жертвами бери-бери.

Подозрение, что эта болезнь связана с питанием, высказывалось еще в 70-е годы прошлого века. В 90-е годы Эйкман открыл причину болезни, но на это почти никто не обратил внимание. Болезнь бери-бери продолжала оставаться серьезной проблемой. Во время русско-японской войны из-за нее была выведена из строя шестая часть личного состава японской армии. Чтобы разрешить проблему, необходим был иной подход. Одним из ученых, способствовавших этому, был Фредерик Гоуленд Хопкинс.

Рано заинтересовавшись химией, Хопкинс работал в различных фирмах и лишь в 28-летнем возрасте занялся медициной. В 32 года он получил диплом и стал преподавать физиологическую химию, как называли в конце прошлого века биохимию. Знание химии и медицины позволило Хопкинсу провести интересные исследования. По существу его методика была такой же, как и у Лунина. Он кормил лабораторных животных (детенышей мышей и крыс) искусственной смесью из различных пищевых веществ и регулярно взвешивал их на весах, наблюдая за ростом. При появлении малейших отклонений от нормы Хопкинс тотчас начинал проводить химические анализы пищи.

Прежде всего он открыл, что белковые вещества различаются по своей питательной ценности. Более подробные исследования показали, что это определяется их составом. Хопкинс открыл незаменимые аминокислоты, которые не могут синтезироваться организмом и должны поступать в него с пищей. Питание неполноценным белком плохо отражалось и на мышах; поэтому в своих дальнейших экспериментах Хопкинс использовал наиболее полноценный белок - казеин (молочный белок). Несмотря на это, состояние лабораторных животных нельзя было назвать хорошим. Хопкинс выяснил, что в зависимости от степени очистки казеин оказывает различное воздействие. Тогда он решил добавить в пищу животных немного молока - эффект был поразительный. Состояние животных резко улучшалось.

К 1910 г. Хопкинс собрал достаточно данных и в марте 1911 г. на одном из собраний членов Английского биохимического общества выступил со своей теорией о "дополнительных" питательных веществах. Эта тема сразу была подхвачена прессой. Лондонская газета "Дейли мейл" опубликовала сенсационные материалы, которые были перепечатаны многими газетами Европы и Америки. Создалась обстановка, в которой кто-то должен был сделать последний завершающий шаг.

Его сделал польский ученый Казимеж Функ, который в 1911 г. также работал в Лондоне. В декабре он опубликовал результат своих исследований экстрактов из семян риса. Выделив вещество в кристаллическом состоянии, он назвал его витамином. Позднее стало ясно, что не все соединения такого рода являются витаминами, но то, что они жизненно важны, не вызывало сомнений. Введя новое понятие - авитаминоз, К. Функ разработал теорию этого явления, которая, между прочим, весьма напоминала идеи Хопкинса. Между учеными завязался спор о приоритете.

Безусловно, Хопкинс является пионером в этой области, однако Функ как автор понятия "авитаминоз", активно работавший потом в области производства витаминов, приобрел гораздо большую известность.

Кандидатуры Эйкмана и Хопкинса не раз выдвигались на соискание Нобелевской премии - и наконец эксперты пришли к заключению, что их исследования уже устарели. Наука, однако, богата неожиданностями. В 1929 г. вопрос о витаминах вдруг предстал в новом свете. Выяснилось, что витамины связаны с ферментами, являясь для них кофакторами. Тогда-то Каролинский институт принял решение наградить двух пионеров в этой области - Эйкмана и Хопкинса,- заявив, что важность их исследований стала теперь очевидной.

Открытия Эйкмана и Хопкинса, за которые они получили Нобелевскую премию по медицине и физиологии, были связаны с витаминами Вх и А. Эти названия, правда, возникли позднее, когда началось химическое исследование витаминов. В этой области работали многие ученые, и некоторые из них были удостоены Нобелевской премии.

К числу самых известных исследователей витаминов относится швейцарский химик-органик Пауль Каррер. В своих экспериментах он в основном использовал методы селективной абсорбции Вилыптеттера, ультрацентрифугирования Сведберга и хроматографии Цвета.

Каррер занялся витаминами после того, как в 1929 г. шведский биохимик Ханс фон Эйлер-Хельпин показал, что пигмент каротин оказывает то же воздействие, что и витамин А. В 1930 г. швейцарский исследователь, уже зная структуру бета-каротина, мог сказать, как из него образуется витамин А.

Это имело большое значение, так как позволяло лучше исследовать физиологическое действие этого вещества и разработать методы его производства.

Другое открытие Пауля Каррера связано также с пигментами. Занимаясь "желтыми ферментами", открытыми Отто Генрихом Варбургом и Вальтером Кристианом, он показал, что их цвет обусловлен особыми соединениями, которые получили название "флавины" ("флавус" по-латыни значит "желтый"). В дальнейшем Каррер установил, что вещество рибофлавин идентично хорошо известному физиологам витамину В2. Проводя химический анализ, Каррер установил структуру этого витамина. Продолжая далее исследовать витамин С, он подтвердил выводы Сент-Дьёрдьи о его структуре. Каррер исследовал также витамины Е и К, многочисленные коферменты, алкалоиды, растительные пигменты и многие другие органические соединения. Результаты его исследований представлены более чем в тысяче публикаций. Столь плодотворная научная деятельность принесла ему широкую известность и авторитет в научных кругах. За успехи в исследовании каротиноидов, флавинов и витаминов А и В2 Карреру в 1937 г. была присуждена Нобелевская премия по химии. Он разделил ее с Хоуорсом. Каррер был удостоен многих званий и титулов рядом зарубежных академий и учебных заведений. Он стал почетным доктором Софийского университета.

В следующем, 1938 г. Нобелевский комитет по химии принял решение вновь присудить премию исследователю, занимающемуся каротиноидами и витаминами. Это был немецкий ученый Рихард Кун, профессор Гейдельбергского университета.

Начало его деятельности связано с изучением ферментов. Затем он занялся соединениями с сопряженными двойными связями, так называемыми полиенами. Это привело Куна к изучению каротиноидов, которые также имеют подобную структуру. Состав этих соединений, содержащих в молекуле 40 атомов углерода и 56 атомов водорода, был установлен Рихардом Вильштеттером. В 1930 г. Каррер в Цюрихе и Зигмунд Отто Розенхейм в Лондоне выделили альфа- и бета-каротин. В 1933 г. Кун открыл гамма-каротин, вслед за чем осуществил обширное исследование каротиноидов и их распространения в растительном и животном мире. В ходе этих экспериментов он внес разного рода усовершенствования в метод хроматографии.

Вторую большую область его работы составляли витамины группы В. Из 5300 л обезжиренного молока Кун с сотрудниками выделили 1 г желтого вещества, которое было названо лактофлавином. Из него выделили лумифлавин, который оказался тем же самым соединением, что и кофактор "желтого фермента" из дрожжей. Выясняя структуру этого вещества, Кун попутно определил и строение лактофлавина, известного также под названием "рибофлавин". Это витамин В2.

В начале 1939 г., после того как Кун был уже удостоен Нобелевской премии по химии за исследование каротиноидов и флавинов, он вместе со своими сотрудниками выделил витамин В2 и в короткий срок определил его состав и структуру. Это соединение оказалось производным пиридина.

Кун стал лауреатом Нобелевской премии в 1938 г., через два года после того, как Гитлер запретил подданным Германского рейха любые контакты с Нобелевскими комитетами*.

* (Причиной этого запрещения было присуждение в 1936 г. Норвежским стортингом Нобелевской премии Мира известному немецкому публицисту-антифашисту Карлу фон Осецкому, который за обличение фашизма и симпатии к СССР был заключен в 1933 г. в концлагерь Зонненбург по обвинению в государственной измене. Нацисты были вынуждены перевести тяжелобольного Осецкого в больницу, чтобы посланцы Нобелевского комитета могли вручить ему премию. Писатель умер в больнице 4 мая 1938 г.- Прим. ред.)

По приказу гестапо Кун вынужден был отказаться от награды. Лишь 11 лет спустя, в 1949 г., он получил ее одновременно с Адольфом Бутенандтом, лауреатом Нобелевской премии по химии за 1939 г., который также отказался от получения премии по аналогичным причинам.

В 1929 г. был открыт еще один витамин. Хенрик Дам из Копенгагенского университета ставил классические опыты с искусственными пищевыми смесями. У цыплят, которых умышленно лишали жиров, вдруг начинались тяжелые кровоизлияния. Анализ крови показал замедление ее коагуляции - процессы свертывания крови были очень затруднены.

В 1931 и 1933 гг. подобные явления наблюдали и американские исследователи. Тем временем Дам, добавляя в пищевые смеси различные вещества, установил, что добавка конопляного семени приводит к прекращению кровоизлияния и восстановлению свойств крови. Так как это было время большой популярности витаминов, естественно напрашивался вывод, что в данном случае наблюдается действие какого-то неизвестного представителя этой группы. Новый витамин был обозначен буквой К (от слова "коагуляция").

Он был обнаружен в семенах капусты, томатов, сои, люцерны, а также в ткани печени животных. Последнее наблюдение указывало на механизм действия этого витамина. Оказалось, что печень содержит фермент, участвующий в коагуляции крови. В отсутствие витамина К фермент не работает, и тем самым нарушается вся цепь реакций, ведущих к свертыванию крови.

Дам был биохимиком высокой квалификации. В 1925 г. он специализировался по микрохимическому анализу у Франца Прегля в Австрии. Через 10 лет он в сотрудничестве с Паулем Каррером начал работать над выяснением структуры вновь открытого витамина К.

Однако первым эту задачу решил Эдуард Аделберт Дойзи, профессор биохимии университета в Сент-Луисе (США, шт. Миссури). В 1939 г. Дойзи выделил из семени люцерны и из рыбной муки два вещества в кристаллическом виде: K1 и К2. Вскоре он определил их структуру: они оказались производными нафтохинона. За этим последовал их синтез, и были открыты аналогичные вещества, но проще по строению и более сильно действующие.

Искусственное получение витамина К явилось большим подарком для медицины. Его начали широко применять для остановки кровотечений, при хирургических операциях, для лечения заболеваний печени и т. д. Использование витамина К для лечения новорожденных, у которых такой авитаминоз часто встречается, позволило значительно снизить детскую смертность.

В 1944 г. Нобелевский фонд возобновил вручение премий, которое вследствие войны было прервано на три года (1940-1942). Поскольку правила фонда допускают задержку объявления премии на год, это дало возможность вручить в 1944 г. премии лауреатам 1943 г. В области медицины ими стали Х. Дам и Э. А. Дойзи - за открытие витамина К и определение его химической структуры.

Витамины, как сравнительно низкомолекулярные соединения, можно было успешно исследовать методами органической химии. Однако при исследовании самого сложного из них (витамина В12) возникла необходимость в более современных средствах. После восьмилетних кропотливых исследований Дороти Кроуфут-Ходжкин из Оксфордского университета определила наконец его строение методом рентгеноструктурного анализа.

Витамин В12 был открыт в 1948 г. Ученые установили, что он синтезируется различными микроорганизмами, прежде всего обитающими в кишечнике жвачных животных. Человек также получает это вещество от микроорганизмов, находящихся в его пищеварительном тракте. Однако иногда этот чрезвычайно тонкий процесс нарушается - и наступают тяжелые авитаминозы. Вскоре после открытия витамина В12 выяснением его структуры и занялась английская исследовательница.

Через восемь лет, в 1956 г., строение витамина В12 стало известно. Это явилось триумфом метода рентгеноструктурного анализа. Впервые таким образом была раскрыта структура столь сложного вещества. Необходимо вместе с тем отметить, что уже в то время другие ученые готовились к более сложным исследованиям. Макс Фердинанд Перу и Джон Коудери Кендрю определили структуру таких сложных белков, как гемоглобин и миоглобин, за что в 1962 году получили Нобелевскую премию по химии. Их сенсационные результаты были достигнуты с помощью более современных средств рентгеноструктурного анализа с использованием ЭВМ.

Однако в 1964 г. Нобелевский комитет по химии, проявив уважение к пионерам в этой области, принял решение присудить премию Дороти Кроуфут-Ходжкин, которая установила структуру пенициллина и витамина В12 без ЭВМ и современной техники.

Ферменты

Одним из основных жизненных процессов является биокатализ. С ним человек сталкивался еще в доисторические времена, когда, по всей вероятности, началось изготовление спиртных напитков. В XVIII в. Антуан Лоран Лавуазье исследовал ферментацию при получении спиртов и пришел к выводу, что в ходе этого процесса сахар распадается на спирт и двуокись углерода. Жозеф Луи Гей-Люссак, произведя точный количественный анализ, установил, что масса спирта и двуокиси углерода, вместе взятых, равна исходной массе сахара. Это доказывало вывод Лавуазье. Причины этого процесса установил еще в 1860 г. Антони ван Левенгук, наблюдая дрожжи в микроскоп.

Прошло, однако, более 150 лет, прежде чем получила развитие клеточная теория и ученые пришли к заключению, что ферментация является функцией живых клеток.

В первой половине XIX в. были накоплены интересные данные о процессе катализа, в частности о биокатализе. В 1814 г. русский химик Константин Сигизмундович Кирхгоф открыл в ячменных зернах вещество, которое превращало крахмал в сахар. Это был фермент амилаза. В 1833 г. его выделили французские химики Ансельм Пайен и Жан Персо. В то же самое время Йене Якоб Берцелиус предложил извлекать вещества, вызывающие ферментацию из живых клеток путем растирания их в порошок. Подобный эксперимент провел в 1846 г. в Берлине Фридрих Люденсдорф. Растерев на стекле клетки дрожжей, он добавил их в сахарный сироп; однако никакой ферментации не произошло.

Подобные опыты нанесли серьезный удар точке зрения Йенса Берцелиуса, Юстуса Либиха и Фридриха Веллера, которые считали, что биокатализ и ферментация - это обычные химические процессы. В то же самое время другие ученые высказывали мнение, что в живом веществе действуют особые процессы, которые не сводятся к чисто химическим. Получили также распространение идеи о некой таинственной "жизненной силе", которая и служит отличительным признаком живого от неживого. В то время подобная идея выглядела весьма привлекательной. Конец этому положил Луи Пастер, который своими оригинальными опытами показал, что ферментация возможна только при наличии живых клеток. Эксперименты крупного французского ученого были безупречны, однако они не отрицали возможности действия ферментов и вне живой клетки: ведь никому не удавалось выделить эти вещества в устойчивом состоянии. Такую задачу поставил перед собой в 1893 г. Эдуард Бухнер из Мюнхенского политехнического института. При содействии Адольфа Байера в институте была создана лаборатория по исследованию ферментов. Бухнер намеревался провести эксперименты с целью разрушения клеток и извлечения из них биокатализаторов. Руководство, однако, посчитало, что из подобных опытов, которые уже неоднократно ставились десятилетия назад, ничего не получится, и обязало Бухнера заняться другой темой.

Тогда ему пришлось обратиться в различные университеты. Он отправился в Киль, затем в Тюбинген и наконец, в 1896 г., во время летнего отпуска смог провести задуманные эксперименты в лаборатории своего брата Ганса, известного бактериолога Института гигиены в Мюнхене. Бухнер смешивал дрожжи с кварцевым песком и путем сильного встряхивания добился разрушения клеток. Он предложил метод фильтрации тонкой гомогенной массы под большим давлением. Так, из дрожжей был получен сок, обладающий большой ферментационной способностью. В нем не было ни одной частицы живого вещества, но, несмотря на это, сахар разлагался.

Эти опыты, удачно завершенные в 1897 г., положили начало современной энзимологии. В 1907 г. Эдуард Бухнер был удостоен Нобелевской премии по химии за открытие бесклеточной ферментации. После проведенных Э. Бухнером исследований сложных биокатализаторов, которые известный биохимик Вилли Кюне назвал энзимами или ферментами, стало возможным изучать их химическими методами.

Опыты Бухнера расширил и усовершенствовал английский биохимик Артур Гарден. В начале века стало известно, что при нагревании ферменты теряют активность. В 1906 г. Гарден и Уильям Юнг провели интересный эксперимент. Добавив к соку живых дрожжей сок прокипяченных дрожжей, они обнаружили, что ферментация резко усилилась. Это навело исследователей на мысль, что фермент состоит из каких-то двух веществ, одно из которых - термостойкое. Бухнер назвал открытый им фермент зимазой - от греческого названия дрожжей. Гарден ввел понятие "хозимаза", которым он обозначал устойчивый компонент фермента*.

* (Одновременно роль фосфатов и коферментов в процессах брожения изучал русский химик Александр Николаевич Лебедев.- Прим. ред.)

Разработка метода ультрафильтрации через желатиновый фильтр открыла перед исследователями новые возможности. Этим методом Гарден разделил зимазу на составные части: через фильтр проходил только коэнзим, оказавшийся достаточно низкомолекулярным соединением. Гарден установил, что в разложении сахара определенную роль играет фосфорная кислота, которая соединяется с ним, образуя глюкозодифосфат. Так, Гарден выделил промежуточный продукт биологического распада углеводов.

Дальнейшие исследования в этой области связаны с деятельностью шведского ученого немецкого происхождения профессора Стокгольмского университета Ханса фон Эйлер-Хельпина. В 1906 г. он вместе с Карлом Мюрбеком приступил к исследованию ферментов. Производя разделение фермента от кофермента по методу Гардена, они после длительных экспериментов установили, что козимаза - это вещество из группы нуклеотидов (соединений аденина с пентозой) с молекулярным весом 490. X. Эйлер-Хельпин установил, что этот кофермент встречается и во многих других биокатализаторах, выполняющих самые разные функции. Это стимулировало исследование коферментов. Эти вещества сравнительно просты, и определение их структуры позволило применить методы органической химии для исследования процессов обмена веществ, связанных с переносом водорода.

Исследования Гардена и Эйлер-Хельпина явились очень важным этапом в развитии энзимологии. Оба ученых были удостоены в 1929 г. Нобелевской премии по химии за расшифровку механизма брожения и исследования в этой связи ферментов.

Еще в прошлом веке некоторые ученые пытались выделить в чистом виде и исследовать вещества, вызывающие биологический катализ. В 1896 г. Корнелис Пекельхаринг выделил белок из желудочного сока, однако не смог убедительно доказать, что это фермент, активизирующий процесс переваривания пищи. Большую работу по выделению ферментов в чистом виде проделал со своими сотрудниками немецкий химик Рихард Мартин Вилылтеттер. Они добились в этом определенных успехов, и Вильштеттер высказывал даже предположение, что ферменты не относятся ни к белкам, ни к углеводам, а представляют собой какой-то новый тип веществ с неизвестной структурой. Подобные туманные рассуждения продолжались до 1926 г., когда Джеймсу Бетчеллеру Самнеру из Корнеллского университета удалось получить кристаллы фермента уреазы и он доказал, что это белок. Самнер начал свои исследования в 1917 г., и они вызвали немало насмешек со стороны его коллег, находившихся под влиянием идей Вильштеттера. Однако такое отношение только еще более подталкивало исследователя к достижению поставленной цели*.

* (В 1906 г. в лаборатории Н. П. Кравкова врач А. Д. Розенфельд выделил из хрена кристаллы фермента оксидазы и показал их белковую природу, но эта работа оказалась забытой.- Прим. ред.)

По словам самого Самнера, ему просто повезло с выбором фермента. Вильштеттер работал с сахаразой и не мог получить даже ее концентрат. Самнер взял для исследования семена растений, в которых в большом количестве содержался фермент уреаза. После многолетних экспериментов он получил наконец это вещество в кристаллической форме путем охлаждения и центрифугирования гомогената из растительных клеток. Значение этого экспериментального результата нельзя недооценивать, особенно если учесть, что лаборатория Самнера располагала незначительными средствами и имела мало сотрудников, а сам он еще в 17-летнем возрасте лишился руки.

Вначале сообщение о том, что кристаллизован фермент, было встречено с недоверием. Однако постепенно число сомневающихся в результатах Самнера становилось все меньше, и, наконец, последний из них, Рихард Вильштеттер, признал себя побежденным. Вслед за этим подобными опытами увлеклись многие ученые, и вскоре были достигнуты новые успехи. Вторым биохимиком, сумевшим получить ферменты в кристаллическом виде, стал Джон Хоуарт Нортроп из Принстона.

Американский биохимик занимался исследованием желудочных соков. Еще в конце прошлого века возникло подозрение, что это белковые вещества. Пекельхаринг был "на пороге" этого открытия. В 1920 г. Дж. Нортроп, повторив его эксперименты, значительно усовершенствовал их и через 10 лет сумел выделить из желудочного сока чистый пепсин. Впоследствии Нортроп и его сотрудники, совершенствуя свою методику, получили еще пять ферментов.

Это были выдающиеся открытия в области химии ферментов и вообще белков. Разработанные учеными способы выделения этих сложных веществ - и именно в кристаллической форме - имели исключительное значение для их исследования, особенно методом рентгеноструктурного анализа. Вершиной этих исследований стало получение в кристаллическом виде вирусов табачной мозаики и полиомиелита, которое осуществил в 1932 г., также в Принстоне, Уэнделл Мередит Стэнли.

Вирусы были открыты русским ученым Дмитрием Иосифовичем Ивановским в 1892 г. Шесть лет спустя их исследовал Мартин Бейеринк, который первым высказал мысль, что это какой-то новый тип возбудителей заболеваний исключительно малых размеров, невидимых в микроскоп. Когда Стэнли удалось получить вирусы в кристаллической форме, это послужило подтверждением их белковой природы и показало, что они занимают промежуточное положение между живым и неживым миром.

Исследования Самнера, Нортропа и Стэнли завоевали в 30-е годы признание во всем мире. В 1946 г. эти ученые были удостоены Нобелевской премии по химии. Дж. Самнер получил половину премии (за доказательство белковой природы ферментов и выделения их в виде кристаллов); другая половина была разделена между Дж. Нортропом (за выделение ферментов в кристаллическом виде) и У. Стэнли (за получение вирусов в кристаллическом виде).

Исследования коферментов показали, что многие из них относятся к нуклеотидам. Эти вещества представляют собой комплекс из трех связанных между собой соединений: остатка фосфорной кислоты, сахара (пентозы) и одного из азотных оснований (пурина или пиримидина).

Когда английский ученый Александер Тодд в 40-е годы приступил к исследованию нуклеотидов, их состав в общих чертах был известен, однако оставалось неясным, как связываются между собой различные субструктуры. В 1949 г. Уолдо Кон определил, в каком месте пятиатомного кольца сахара присоединяются другие соединения. Тодд развил эти идеи и установил точную структуру нуклеотидов. Его результаты не только сыграли исключительно важную роль в энзимологии, но и заложили основы для исследования структуры ДНК, осуществленного Фрэнсисом Гарри Комптоном Криком, Джеймсом Дьюи Уотсоном и другими учеными.

А. Тодд известен также своими исследованиями витаминов и ряда других биологически активных природных веществ. Свою научную деятельность он начал у Роберта Робинсона с опытов над растительными пигментами - антоцианами в 30-е годы. Наибольшую известность, однако, получили его исследования нуклеотидов и нуклеотидокоферментов, за которые он и был удостоен Нобелевской премии по химии в 1957 г.

В 50-е годы в Рокфеллеровском университете в Нью-Йорке работали два исследователя, чьи имена для биохимиков неразрывно связаны. Это Станфорд Мур и Уильям Хоуард Стайн, внесшие огромный вклад в исследование структуры ферментов.

Биокатализаторы являются белковыми телами, и их исследование составляет часть химии белков. Большие достижения здесь принадлежат Эмилю Фишеру, который установил, как связываются аминокислоты (из которых построены все белки). Английский ученый Фредерик Сенгер разработал в 50-е годы метод определения последовательности аминокислот в белках. Он определил структуру гормона инсулина, за что в 1958 г. был удостоен Нобелевской премии по химии. В то же самое время С. Мур и У. Стайн усовершенствовали метод, создав автоматическую установку для исследования полипептидных цепей, из которых построены белки.

В 1960 г. эти два исследователя определили первичную структуру, т. е. последовательность соединения аминокислотных оснований в панкреатической рибонуклеазе. Параллельно они усовершенствовали свою методику, развив дальше метод Сенгера: исследуемые белковые молекулы разделялись с помощью ферментов на отдельные фрагменты. (Биохимикам хорошо известно, что различные ферменты разрывают молекулы в разных точках.) Получался набор белковых фрагментов, которые разделялись с помощью ионообменных смол и анализировались. Эти фрагменты частично взаимно перекрывались, что позволило путем их сопоставления определять общую последовательность аминокислот.

Стайн и Мур установили первичную структуру и других ферментов. Параллельно с ними работал Кристиан Бемер Анфинсен, который изучал связь между первичной (упорядоченностью аминокислот в цепях) и третичной (пространственным расположением этих цепей) структурами. Вторичная структура ферментов была исследована Лайнусом Карлом Полингом в конце 40-х годов. Он установил, что несколько полипептидных цепей закручивается, образуя различного рода спирали. В свою очередь спиральные нити также деформируются определенным образом, создавая третичную структуру.

Исследованием именно этого наиболее общего строения белковой молекулы, определяющего ее форму и функцию, занялся Анфинсен из Национального института здравоохранения в Бетесде (близ Вашингтона). Он установил, что при денатурации белка (когда клубок полипептидной цепи раскручивается) возможно спонтанное восстановление пространственной структуры (обратное раскручиванию белка). Разумеется, это происходит в том случае, если сами цепи не повреждены. Эти результаты привели Анфиисена к выводу, что в первичной структуре белка заложена вся информация о пространственном строении его молекулы. Для химиков это был очень важный вывод. Он означал, что достаточно только правильно упорядочить аминокислоты в цепи - и можно искусственным путем синтезировать молекулу белка, которая ничем не будет отличаться от природной.

Исследования Стайна, Мура и Анфинсена оказали большое влияние на развитие химии белков и особенно на исследование ферментов, которые относятся к числу наиболее интересных белковых молекул. В 1972 г. за фундаментальный вклад в химию ферментов эти трое ученых были удостоены Нобелевской премии по химии.

предыдущая главасодержаниеследующая глава




Пользовательского поиска




Физики превратили непроводящий полимер в полупроводник силой звука

Десять невозможных вещей, ставших возможными благодаря современной физике

Физики нашли возможную брешь в Стандартной модели

Ученые объяснили звуки метеоров

Теория эмерджентности: что такое реальность?

Ученые математически доказали недостижимость абсолютного нуля температуры

Четыре крупнейших ошибки в научной жизни Эйнштейна






© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2001-2017
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://physiclib.ru/ 'PhysicLib.ru: Библиотека по физике'

Рейтинг@Mail.ru