Новости    Библиотека    Энциклопедия    Биографии    Ссылки    Карта сайта    О сайте


предыдущая главасодержаниеследующая глава

XII. Рождение генетики

В XIII в. с развитием естествознания внимание исследователей стали привлекать таинственные процессы размножения и зарождения новой жизни. К этому периоду относятся и первые научные эксперименты по гибридизации организмов. Одним из пионеров в этой области был английский селекционер Томас Эндрю Найт. Скрещивая различные растения, он обратил внимание на то, что каждый сорт отличается определенным набором признаков. В гибридах эти особенности не теряются, а наследуются в различных комбинациях. Так, в начале XIX в. Найт пришел к концепции об элементарных наследственных признаках, которые через сто лет получили название генов.

Говоря об истории генетики, после Найта обычно называют имена французских исследователей Огюстена Сажре и Шарля Нодена. Важнейшим открытием Сажре было установление явления доминантности. При скрещивании различных сортов в гибридах часто проявляются отличительные черты только одного из родителей. В последующих поколениях, однако, могут обнаруживаться и подавленные признаки другого родителя. Это свидетельствовало о том, что при скрещивании элементарные наследственные черты не теряются. В 1852 г. Ноден предпринял количественные исследования распределения наследственных признаков при скрещивании. Но он, как и Сажре, экспериментировал с растениями, мало подходящими для такого рода анализа. Работа этих и других исследователей подготовила почву для выяснения законов генетики. Однако, чтобы получить ясные результаты, требовалось правильно сформулировать вопрос и точно поставить эксперимент.

Это сделал чешский исследователь-любитель Грегор Иоганн Мендель в опытах, проведенных в период 1856-1863 гг. С самого начала его работа была очень точно спланирована. Мендель прежде всего исключительно удачно выбрал объект для исследования - обычный горох. Затем, в отличие от Нодена, он сосредоточил внимание на минимальном количестве признаков. Так, в результате многолетних экспериментов Мендель открыл законы доминирования признаков в первом поколении (отмеченного еще Сажре) независимо от их распределения в последующих поколениях и их количественного соотношения.

Своими исследованиями Мендель определил развитие науки на десятилетия. В 60-е годы XIX в. о наследственности и наследовании признаков создавались самые невероятные теории. Ученые лишь шаг за шагом приближались к истине, хотя и с другого направления. В 1875 г. Оскар Гертвиг описал процесс оплодотворения как соединение двух клеток. Обобщив исследования, касающиеся деления клеток, Август Вейсман назвал носителями наследственных свойств ядра клеток. Изучение хромосом привело к предположениям о том, как могут распределяться наследственные факторы между двумя клетками. Эти "цветные тельца" в клеточном ядре были открыты Фридрихом Антоном Шнейдером в 1873 г. Вскоре выяснилось, что у каждого определенного вида растений или животных число хромосом одинаково. В 1883 г. Эдуард Ван Бенеден заметил, что в половых клетках их в два раза меньше. При их соединении получается двойной набор хромосом, характерный для взрослых индивидуумов. Так, в начале нашего века эмбриология и цитология заложили надежную основу для исследования материальных носителей наследственности. Оставалось только "открыть" генетику. Это сделали Карл Эрих Корренс, Хуго Де Фриз и Эрих Чермак, работавшие соответственно в Германии, Нидерландах и Австрии.

В 1900 г. эти трое ученых опубликовали независимо друг от друга результаты исследований по скрещиванию растений. Чемрак обнаружил забытую работу Менделя, и она была вновь напечатана в 1901 г. Вскоре после этого два цитолога, Уолтор Сеттен и Теодор Бовери, показали, что законы Менделя очень хорошо объясняют распределение хромосом при делении клеток. Так, медленно набирала темпы хромосомная теория наследственности.

В первое десятилетие нашего века развитие генетики происходило довольно бурно. Классический генетический анализ еще не был разработан, и в исследовании наследственности продолжал доминировать подход английской биометрической школы. Ее представители умело пользовались математической статистикой, но мало интересовались биологической стороной вопроса; они искали средние показатели количественных признаков и отклонения от них. Значительно позже стало понятно, что эти признаки определяются большим числом генов и их анализ методами классической генетики крайне затруднителен. Однако в 1908 г. это еще не было известно, и Карл Пирсон, основатель биометрической школы в Англии, заявил, что нет окончательного доказательства применимости законов Менделя к какой-либо из существующих форм жизни. Обнаружились несоответствия и в других областях. В 1906 г. Уильям Бетсон и его сотрудник Р. Пеннет, исследуя парные признаки, установили, что их распределение не согласуется с законами Менделя. Молодая наука генетика попала в кризисную ситуацию.

Все эти противоречия были, в сущности, началом нового открытия. И его сделал Томас Морган, профессор экспериментальной зоологии Колумбийского университета в Нью-Йорке. Он сумел объединить данные статистики и результаты исследования процессов, происходящих в клетках. Морган приступил к экспериментам в области генетики в 1909 г. Прежде всего он обратился к своим коллегам по университету с просьбой помочь подыскать ему такое живое существо, которое могло бы быстро размножаться в ограниченном пространстве и при ограниченных затратах на него. Оказалось, что таким условиям полностью соответствует широко распространенная обыкновенная плодовая мушка - по-латыни "дрозофила ме-ланогастер".

Небольшая лаборатория Моргана, названная "дрозофильной комнатой", вскоре заполнилась бутылками из-под молока, лабораторными колбами, пробирками и тому подобными вещами. Помещенная в колбу, пара дрозофил для полного счастья нуждается лишь в кусочке банана - и через 12 дней приносит потомство в 1000 особей. От небольшого количества эфира они засыпают, после чего их можно сортировать с помощью акварельной кисточки. Морфология дрозофилы исключительно богата: большое разнообразие форм волосков, крыльев, антенн, цвета глаз и т. п., что делает ее идеальным объектом для генетических исследований.

Изучая распределение наследственных признаков, Морган столкнулся с тем же "взаимным притяжением генов", которое было замечено в 1906 г. Бетсоном и Пеннетом. Выяснилось, что наследственные признаки дрозофилы можно разделить на три связанные между собой группы, которые наследуются как единое целое. Морган назвал этот феномен сцеплением генов. Как цитолог он очень хорошо знал, что в клетках дрозофилы имеются три большие хромосомы. Наряду с ними существует еще четвертая, небольшая хромосома. Спустя несколько лет, в 1914 г., Герман Джозеф Мёллер, работавший тогда у Моргана, открыл четвертую группу генов, в самом деле очень малочисленную.

Так Морган установил, что гены действительно находятся в хромосомах. Это открытие объясняло противоречие, обнаруженное Бетсоном и Пеннетом. Вскоре, однако, возникли новые проблемы. Гены, о которых было известно, что они принадлежат к одной группе, в следующих поколениях неожиданно оказывались в разных группах. Морган высказал предположение, что происходит обмен генетическим материалом между разными хромосомами. Ему даже удалось наблюдать этот процесс в микроскоп: две хромосомы сближались и скрещивались, обмениваясь фрагментами. Этот процесс получил название кроссинговера.

Морган представлял себе гены упорядоченными по длине хромосом, как бусинки в ожерелье. Экспериментальные данные привели его к замечательной идее о создании генетических карт. Очевидно, что, чем дальше находятся два гена друг от друга, тем больше вероятность обрыва их связывающей нити и получения новых сочетаний генов. Стало возможным определить относительное расстояние между генами в хромосоме путем простого вычисления процента кроссинговера. Впоследствии была даже введена единица измерения "моргай", соответствующая одному проценту кроссинговера.

Замечательное открытие Моргана дало мощный толчок развитию генетики. Молодая наука обогатилась первыми теоретическими обоснованиями и получила признание в мире ученых. Одним из выражений такого признания было решение профессоров из Каролинского института присудить в 1933 г. Нобелевскую премию по физиологии и медицине Моргану за создание хромосомной теории наследственности.

В опытах Моргана новая мутация случалась один раз на несколько тысяч дрозофил. С развитием концепции гена стало ясно, что в основе мутации лежат какие-то химические изменения в веществе - носителе наследственной информации. Этот вопрос был подробно изучен Г. Дж. Мёллером, который еще со студенческих лет начал работать в группе Моргана. Освоив в совершенстве методы работы с дрозофилами, он приступил к самостоятельному исследованию мутаций, их причин и возможностей получения искуственным путем.

Мёллер подвергал дрозофил различным воздействиям и уже в самом начале исследований установил, что число мутаций увеличивается с повышением температуры. Он вспомнил об известной из химии закономерности, а именно о том, что при нагревании скорость реакции возрастает, и решил искать другие, еще более сильные средства воздействия. Он начал с облучения мушек светом и наконец, в 1926 г., дошел до рентгеновских лучей. За год до этого Г. А. Надсон совместно с Г. С. Филипповым в Советском Союзе уже провели подобные опыты, подвергая дрожжи рентгеновскому облучению.

Эти эксперименты положили начало радиобиологии. Мёллер добился почти 100-процентной мутации в потомстве дрозофил, что в тысячи раз превышает частоту мутаций в естественных условиях. Так он осуществил мечту своей молодости - ускорить процесс эволюции, найдя способ вмешиваться в него. Метод получения искуственных мутаций был с восторгом встречен селекционерами. Уже в 1928 г. Л. Стедлер успешно применил его к кукурузе. В 30-е годы И. В. Тимофеев-Ресовский, Макс Дельбрюк и другие крупные ученые создали теорию мишени, которая объясняла действие радиации.

Открытие Мёллера принесло ему всемирную известность. В 1932 г. он был приглашен на работу в Берлин, а два года спустя - в Ленинград, где работал с выдающимся советским генетиком Николаем Ивановичем Вавиловым. Затем, до 1937 г., Мёллер работал в Москве, руководя большим коллективом сотрудников*. В 1945 г. мир узнал о зловещей мощи и пагубном воздействии атомного оружия. Радиобиология сразу стала исключительно актуальной. И вскоре, в 1946 г., Г. Дж. Мёллер был удостоен Нобелевской премии по медицине и физиологии за исследование мутаций, вызываемых рентгеновским излучением.

* (Работая в Москве, Мёллер совместно с Александрой Алексеевной Прокофьевой-Бельговской в 1935 г, определил размер генов у дрозофилы.- Прим. ред.)

Хромосомная теория наследственности явилась высшим достижением классической генетики. Хромосомные карты и возможность создания искусственных мутаций с помощью радиации или химических мутагенов оказалась мощным оружием в руках селекционеров. Благодаря ему чисто интуитивный искусственный отбор, осуществляемый в течение тысячелетий, превратился в точную науку, и это позволило неимоверно ускорить создание новых сортов. В 50-60-е годы были получены новые высокоурожайные культуры; результат их внедрения оказался столь впечатляющим, что в мире заговорили о "зеленой революции". К числу ученых, внесших большой вклад в ее осуществление, относится американский ученый-селекционер Норман Эрнест Борлоуг. В 50-е годы он начал проводить в Мексике исследования коротко-стебельных сортов пшеницы, скрещивая японский сорт "норин" с другими известными сортами. Постепенно были получены короткостебельные гибриды японского предшественника, обладающие ценными качествами других сортов. Это сыграло исключительную роль в интенсификации земледелия: короткий стебель способен нести большой колос, не полегая, и растение не расходует энергию на образование вегетативной массы, которая превращается в дальнейшем в ненужную солому.

Норман Борлоуг не был кабинетным ученым. Осуществив эту блестящую селекционную работу, он приложил огромные усилия по внедрению новых сортов в максимально короткий срок. В 1965 г. он организовал отправку десятков тысяч семян из руководимого им Международного центра по улучшению сортов кукурузы и пшеницы на полуостров Индостан - один из районов хронического голода. Менее чем за пять лет производство зерна в Индии и Пакистане удвоилось.

Заслуги ученого, который покинул свою лабораторию, чтобы помочь голодающим на месте, побудили Нобелевский комитет при Норвежском стортинге присудить в 1970 г. Н. Э. Борлоугу Нобелевскую премию Мира.

Информационные молекулы

В конце 1868 г. швейцарский врач Фридрих Мишер выделил из ядер лейкоцитов неизвестное вещество, которое назвал нуклеином. Примерно в те же годы Грегор Мендель тщетно старался убедить ученый мир в значении своей работы. До середины нашего столетия никто не предполагал, что эти два открытия столь тесно связаны между собой. Работа Менделя пребывала в забвении до 1901 г., а результаты исследований Мишера были опубликованы в подробном изложении лишь после его смерти - в 1890 г. Незадолго до этого, в 1889 г., немецкий химик Рихард Альтман предложил назвать нуклеин

Мишера нуклеиновой кислотой. Мишер сделал свое открытие в лаборатории известного исследователя Феликса Гоппе-Зейлера. Оно было настолько необычным, что этот ученый, не поверив Мишеру, поручил своим сотрудникам проверить его. Это задержало на два года публикацию статьи Мишера, озаглавленной "О химических свойствах клеток гноя", в которой он описывал свое открытие*.

* (Статьи и необычайно интересная переписка Ф. Мишера изданы на русском языке: Мишер Ф. Труды по биохимии,- М.: Наука, 1985.- Прим. ред.)

В 1879 г. в лаборатории Гоппе-Зейлера начал работать Альбрехт Коссель. В течение десяти последующих лет он выделил основные составные части нуклеина: содержащие азот вещества - аденин и гуанин, фосфорную кислоту и соединения из группы углеводов. Работы Кос-селя над нуклеиновыми кислотами явились одним из его достижений, за которые он был удостоен в 1910 г. Нобелевской премии по медицине и физиологии.

До 40-х годов исследование нуклеиновых кислот считалось весьма скучным и вообще бесперспективным занятием. Так продолжалось до 1944 г., когда Освальд Теодор Эйвери, Колин Мак-Леод и Маклин Мак-Карти установили, что дезоксирибонуклеиновая кислота (ДНК) является носителем генетической информации.

Это - одно из крупнейших открытий в современной биологии. Его история берет начало в 1928 г., когда Фредерик Гриффит в ходе своих опытов смешал невирулентные пневмококки с убитыми болезнетворными бактериями того же вида. Он заметил, что происходит какое-то взаимодействие, в результате которого живые микроорганизмы приобретают вирулентные свойства. В 1944 г, Эйвери с сотрудниками повторили этот эксперимент, используя чистую ДНК,- они обнаружили то же самое превращение. Это убедительно доказывало, что нуклеиновая кислота сохраняет и передает признаки вирулентности и вообще наследственные признаки.

Сообщение о том, что нуклеиновые кислоты выполняют столь важную функцию, сразу привлекло к себе внимание ученых. В 1948 г. исследованием нуклеиновых кислот занялся известный английский химик-органик Александер Тодд. В течение десяти лет подробно изучая первичную структуру нуклеиновых кислот, он выяснил, каким способом связываются четыре азотных основания - аденин, гуанин, цитозин, тимин (в РНК вместо тимина содержится урацил) - с пятиатомным кольцом сахара рибозы или дезоксирибозы и молекулой фосфорной кислоты. Комплекс из азотного основания (пуринового или пиримидинового), углевода (рибозы или дезоксирибозы) и остатка фосфорной кислоты называется нуклеотидом. Эти атомные соединения не только являются составной частью нуклеиновых кислот, но и входят в состав ферментов в качестве активных групп - коферментов. За свои исследования нуклеотидов А. Тодд был удостоен в 1957 г. Нобелевской премии по химии.

Еще в 1938 г. Уильям Астбери, автор термина "молекулярная биология", получил со своим сотрудником Флорином Беллом рентгенограммы ДНК и установил, что азотные основания в этой длинной молекуле должны располагаться, как пластинки, одно над другим. Через 10 лет Эрвин Чаргафф сформулировал знаменитые "правила Чаргаффа" - общее количество гуанина и аденина из группы пуринов в молекуле ДНК равно количеству цитозина и тимина из группы пиримидинов. Указанные два типа соединений различаются по форме и размеру своих кольцевидных структур. Эти данные имели очень большое значение для работ, которые проводили в Кавендишской лаборатории Кембриджского университета Фрэнсис Харри Комптон Крик и Джеймс Дьюи Уотсон.

В мае 1951 г. Уотсон, молодой исследователь и ученик Сальвадора Эдуарда Лурии, встретившись в Копенгагене с Морисом Уилкинсом из Лондонского университета, ознакомился с его рентгенограммой кристаллов ДНК. Уотсона это очень заинтересовало, и по его просьбе Лурия договорился о его работе у Джона Кендрю в Кавендишской лаборатории. В то время М. Ф. Перуц, Дж. К. Кендрю и многие другие ученые занимались рентгено-структурным анализом сложных биомолекул, используя методы Дж. Бернала и Д. Кроуфут-Ходжкин и проводя расчеты с помощью первых, еще несовершенных ЭВМ. В Кембридже Уотсон познакомился с Фрэнсисом Криком; они быстро нашли общий язык и поставили перед собой сложную задачу - определить структуру ДНК. В 1952 г. этим вопросом занимались в Лондонском университете Розалинд Франклин и Морис Уилкинс. Они получили довольно хорошие рентгенограммы, но не знали точно, как их интерпретировать. Этот вопрос пытались разрешить многие исследователи, в том числе и известный Лайнус Карл Полинг,- но без особого успеха.

История открытия структуры ДНК описана Уотсоном в его замечательной книге "Двойная спираль", изданной в 1968 г. В ней он вспоминает о целом ряде счастливых обстоятельств, которые помогли ему и Крику первыми разгадать структуру ДНК. Одно из таких обстоятельств - общение со специалистами из других областей науки. В разговорах с химиками Уотсон узнал, что структурные формулы, которыми пользовались они с Криком и их "конкуренты" в Лондоне, весьма схематичны и вряд ли отвечают истине. Поняв подлинное строение пуринов и пиримидинов, Уотсон и Крик установили, что они тесно связаны между собой, и если принять, что молекула ДНК состоит из двух цепей, то можно хорошо объяснить и правила Чаргаффа. Цепи должны быть закрученными одна вокруг другой, так чтобы сохранялись углы между различными группами атомов; таким образом и появилась на свет структура знаменитой двойной спирали, в которой связанные между собой пурины и пиримидины создают систему, напоминающую ступеньки лестницы.

Уже в первом своем сообщении в 1953 г. Крик и Уотсон отметили, что структура двойной спирали ДНК очень хорошо объясняет процесс "размножения" этой молекулы. Когда две цепи ее разъединяются, к ним могут прикрепляться новые нуклеотиды, и около каждой из старых цепей образуется новая, точно ей соответствующая. Это было поистине замечательное открытие. Впервые была найдена структура, которая могла самовоспроизводиться и, таким образом, осуществлять основную жизненную функцию. Великолепные результаты Уотсона и Крика были бы невозможны без точных рентгенограмм Р. Франклин и М. Уилкинса. Ученые, открывшие знаменитую двойную спираль ДНК, в которой содержится генетическая информация о жизни, стали в 1962 г. лауреатами Нобелевской премии. Физики Крик и Уилкинс и биохимик Уотсон получили премию по физиологии и медицине за открытие структуры нуклеиновых кислот и ее роли в переносе информации в живом веществе. К сожалению, Франклин не оказалась в числе лауреатов-она умерла в 1957 г.

Наряду с химическими и физическими исследованиями нуклеиновых кислот в 40-50-е годы ставились опыты, целью которых было выяснение механизма их биосинтеза. В 1946 г. в Нью-Йоркском университете встретились Северо Очоа, баск из Испании, и Артур Корнберг из Нью-Йорка; с тех пор началось их длительное и плодотворное сотрудничество. Очоа работал с РНК бактерий, вызывающих уксуснокислую ферментацию, и Корнберг - с ДНК известной бактерией коли, обитающей в пищеварительном тракте человека. Ученым удалось обнаружить ферменты, которые синтезируют длинные цепи этих биополимеров - ДНК и РНК: достаточно было поместить в подходящую среду четыре основных нуклеотида и добавить фермент полимер азу. Необходимо также еще и небольшое количество готовой нуклеиновой кислоты. В этих условиях начинался синтез ДНК или РНК "ин витро" - в пробирке.

Результаты оказались весьма впечатляющими: впервые нуклеиновая кислота была синтезирована вне живой клетки. Сам Корнберг сравнивал это достижение с открытием Бухнером внеклеточного брожения. Еще одна функция живого вещества была выведена из клетки, и стало возможным изучать ее в лабораторных условиях. За открытие механизмов биосинтеза РНК и ДНК С. Очоа и А. Корнбергу была присуждена в 1959 г. Нобелевская премия по физиологии и медицине.

Еще в 40-х годах биохимикам было ясно, что последовательность нуклеотидов определяет систему расположения аминокислот в белковой молекуле. Все белки построены из полипептидных цепей, которые включают 20 аминокислот. В ДНК, однако, только 4 нуклеотида. Очевидно, эти 20 аминокислот представляются какими-то различными комбинациями нуклеотидов. Этим вопросом занялся известный физик Г. А. Гамов. Он показал, что при сочетании четырех нуклеотидов тройками получаются 64 различные комбинации, чего вполне достаточно для кодирования любых белков. Идея выглядела привлекательной, но в 1954 г., когда Гамов опубликовал свою работу, было совершенно неясно, как ее можно доказать. В 1958 г. Эдуард Тейтем в своей Нобелевской лекции выразил надежду, что кто-нибудь из более молодых слушателей доживет до расшифровки генетического кода. Но реальность нередко опережает мечты: это произошло уже в 1961 г.

В этом году Маршалл Уоррен Ниренберг и Генрих Маттеи искусственно синтезировали РНК, состоящую только из одного нуклеотида. С ее участием они осуществили внеклеточный синтез белковой молекулы и получили полипептид лишь из одной аминокислоты. Оказалось, например, что РНК, построенная из урацила и содержащая, естественно, лишь триплет УУУ, кодирует синтез полипептида, состоящего только из аминокислоты - фенилаланина. Так этот удивительно простой и остроумный метод положил начало расшифровке генетического кода. В данной работе принимали участие Северо Очоа и индийский ученый Хар Гобинд Корана, ученик Владимира Прелога из Цюриха и Александера Тод-да из Кембриджа.

Большой заслугой Кораны явилась разработка методов синтеза различных молекул ДНК и РНК с определенной последовательностью кодирующих триплетов. Искусственное синтезирование нуклеиновых кислот позволило к 1966 г. раскрыть значение всех 64 комбинаций. Оказалось, что некоторые аминокислоты кодируются несколькими триплетами. В разных организмах используются различные триплеты, или, как говорят биохимики, ДНК пользуется различными "диалектами". Только три кодона (триплета) оказались бессмысленными: они не кодируют аминокислоту, но зато играют роль "знаков препинания". Когда процесс записи информации доходит до такого "бессмысленного" кодона, синтез белка прекращается.

После раскрытия генетического кода, когда стало ясно, как записывается наследственная информация, остался неразрешенным вопрос о "переводе" этой информации с языка ДНК на язык белков. Этой проблемой занялся Роберт Уильям Холли, ученик Винсента дю Виньо из Корнеллского университета.

Еще в начале 40-х годов Торбьёрн Касперсон в Швеции и Жан Браше в Бельгии установили, что в тканях, где идет активный синтез белков, наблюдается повышенное содержание РНК. В 50-е годы некоторые ученые, исследуя этот вопрос, открыли рибонуклеиновые кислоты, молекулы которых имеют сравнительно небольшие массы и размеры. В 1957 г. Фрэнсис Крик разработал теорию, согласно которой на нуклеиновой матрице должны выстраиваться по определенной системе какие-то вещества, которые и переносят аминокислоты в белковую молекулу. Так возникла гипотеза транспортной РНК.

Теория исходила из необходимости наличия 20 различных транспортных РНК, соответствующих 20 аминокислотам. Р. Холли поставил перед собой задачу - исследовать одну из них. С помощью специальных ферментов (рибонуклеаз) он разделял молекулу РНК на небольшие фрагменты и определял их нуклеотидную последовательность. Используя различные ферменты, Холли синтезировал все более крупные фрагменты и к 1965 г. определил структуру транспортной РНК, переносящей аланин в клетках дрожжей.

Метод Холли был сразу же взят на вооружение учеными, и вскоре удалось раскрыть структуры других транспортных рибонуклеиновых кислот. Оказалось, что молекула этих веществ имеет на одном конце триплет нуклеотидов (антикодон), который точно отвечает триплету матрицы. Так, транспортные РНК встречаются по определенной системе на длинной молекуле информационной РНК, являющейся копией соответствующего гена из молекулы ДНК. Транспортные РНК несут на своем хвосте различные аминокислоты, которые также упорядочиваются по определенной системе и с помощью ферментов соединяются в цепь. Этот процесс осуществляется в рибосомах - клеточных "фабриках" по производству белковых молекул.

Обширные и глубокие исследования Ниренберга, Кораны и Холли внесли ясность в вопрос о способе записи и использования генетической информации. В 1968 г. эти трое ученых были удостоены Нобелевской премии по физиологии и медицине за интерпретацию генетического кода и его функций в синтезе белка.

Совершенствуя свои методы синтеза полинуклеотидных цепей, Корана сумел получить в 1970 г. первый искусственный ген (триплет). Это сыграло важную роль в зарождении генной инженерии. Синтезирование стало возможным лишь после того, как была определена последовательность нуклеотидов в гене. Эта сложнейшая задача в исследовании нуклеиновых кислот нашла свое решение лишь в последнее время.

Молекулярная генетика

В 1935 г. в Париж к известному генетику Борису Эфрусси прибыл молодой исследователь из Калифорнийского технологического института. Это был Джордж Уэлс Бидл. В Париже он вместе со своим французским коллегой начал эксперименты в области, пограничной между генетикой и биохимией. Маленькая мушка дрозофила по-прежнему оставалась для генетиков предпочтительным объектом исследования. Ученые решили проследить, как наследуется у нее глазной пигмент. Эти эксперименты побудили Бидла продолжить изучение биохимических основ наследственности, и это сделало его одним из пионеров зародившейся в 40-х годах новой науки - молекулярной генетики.

В 1937 г. Бидл уехал в Станфордский университет, где встретился с Эдуардом Тейтемом. Там началось их плодотворное сотрудничество. Прежде всего они пришли к заключению, что дрозофила - слишком сложный объект для исследования, и в качестве такового избрали плесневый грибок - нейроспору. Тейтем, работавший над диссертацией по обмену веществ у бактерий, как специалист-микробиолог, знал, что этот плесневый грибок может расти в искусственной среде, состоящей из сахара, соли и витамина Н. В ходе опытов грибок облучали рентгеновскими лучами, получая различные мутантные формы. Наиболее характерной особенностью этих мутантов было то, что они уже не могли расти в такой бедной среде: требовались добавки новых веществ. Это было истолковано как изменение ферментативных систем организма.

В свое время работы Г. Дж. Мёллера показали, что рентгеновское излучение вызывает изменения в генетическом материале. Теперь из опытов Бидла и Тейтема следовало, что мутации в генах непосредственно влияют на ферментативные системы организма. Это явилось первым доказательством того, что гены регулируют биохимические функции живых существ. Обобщая результаты своих исследований, Бидл и Тейтем в 1944 г. выдвинули широкоизвестную ныне концепцию "один ген - один фермент".

В 1958 г. Нобелевский комитет при Каролинском институте принял решение присудить Бидл у и Тейтему премию по физиологии и медицине за открытие влияния генов на обмен веществ. Вместе с ними Нобелевскую премию получил молодой исследователь Джошуа Ледерберг, который рано приобрел известность своими исследованиями по генетике бактерий. В 1946 г. он стал сотрудничать с Тейтемом в Йельском университете и за два года подготовил и защитил докторскую диссертацию.

Крупное открытие Ледерберга связано с исследованием механизмов конъюгации у бактерий: при совместном выращивании бактериальные клетки часто соприкасаются и обмениваются генетическим материалом. Ледерберг и Тейтем поставили опыты по совместному выращиванию мутантов бактерии кишечной палочки - одного из любимых объектов исследования для микробиологов. Опыты строились по тому же принципу, что и прежде: получали так называемые ауксотрофные мутанты, которые не способны уже расти в бедной питательными веществами среде, а испытывают потребность в специальных добавках. Ученые обнаружили, что при совместном выращивании таких бактерий появляются гибриды, объединяющие в себе признаки "родителей". Наблюдаемый результат объяснили конъюгацией клеток - своеобразным процессом полового размножения у бактерий.

При исследованиях под микроскопом Ледерберг заметил, что в точке соприкосновения двух клеток их стенки исчезают и образуется протоплазменный мостик, по которому ДНК переходит из одной бактерии в другую. Это наблюдение привело Ледерберга к интересной идее: а что, если попробовать встряхнуть чашку с бактериями? Ведь в таком случае связь между бактериями должна прекратиться преждевременно и обмен ограничится лишь частью генетического материала. Исследуя затем свойства полученных штаммов гибридов, можно точно определить, какие гены переходят из одной бактерии в другую за тот или иной промежуток времени. Этот оригинальный метод дал возможность Ледербергу составить генетические карты микроорганизмов.

В зависимости от строения клеток живые организмы делятся на две крупные группы. Те, что устроены просто, называются прокариотами: их клетки не имеют оформленного ядра и ДНК у них находится в клетке в необособленном виде. К этой группе относятся бактерии. Более сложные организмы, эукариоты, имеют клеточное ядро, которее отделено мембраной от клеточной плазмы и содержит ДНК, связанную специфическими белками в хромосомы. Бактериальную ДНК иногда также называют хромосомой. Благодаря своему простому устройству генетический аппарат бактерий легче поддается исследованию, и это позволило французским ученым Франсуа Жакобу и Жаку Люсьену Моно изучить механизм регуляции генной активности.

В молодости ученый-медик Франсуа Жакоб мечтал стать хирургом. Но началась вторая мировая война, и ему пришлось поехать военным врачом в Африку. В 1944 г. при высадке десанта в Нормандии он был тяжело ранен, и это окончательно расстроило все его планы. Тогда Жакоб решил заняться наукой. В 1950 г. он попадает в Институт Пастер а к известному микробиологу и вирусологу Андре Мишелю Львову. Там уже работал Моно, ученик Львова и Эфрусси.

Одним из важнейших вопросов, над которыми трудились в то время биологи, касался лизогении у некоторых бактерий. Это странное явление заключалось в том, что на плотных колониях бактерий неожиданно появлялись светлые пятна, вызванные разложением клеток. Андре Львов с сотрудниками установил, что ультрафиолетовое излучение может вызывать процесс распада бактерий, имеющих в своей наследственности фактор лизогенности. Это открытие позволило французскому ученому впервые правильно объяснить явление лизогении. А. М. Львов доказал, что в клетках лизогенных бактерий существует некая неинфекционная форма вируса (профаг), которая не размножается там, а прикрепляется к бактериальной ДНК. Становясь частью генетического аппарата, он влияет на механизм генной регуляции, вследствие чего теряет свою активность. Под внешним воздействием (например, ультрафиолетового излучения) профаг может оторваться от бактериальной хромосомы и превратиться в активный вирус, который и вызывает гибель клетки. Теория Львова представляла большой интерес, ибо впервые ставился вопрос о регуляции генной активности. За эту работу А. М. Львов был удостоен в 1965 г. Нобелевской премии по физиологии и медицине.

Еще в 40-е годы высказывались предположения, что, возможно, функции генов регулируют гистоны (белки, связанные с ДНК). В 1958 г. Жакоб и Моно, изучая образование в бактериальной клетке фермента бета-галакто-зидазы, обнаружили аналогию между этими процессами и процессами ингибирования у лизогенных бактерий. Постепенно накапливая факты, они в 1961 г. выдвинули свою теорию регуляции генной активности.

Согласно этой теории, в ДНК кроме структурных генов, несущих информацию о процессах биосинтеза, есть гены-регуляторы и гены-операторы. Ген-регулятор кодирует синтезирование специфического вещества - репрессора. Оно присоединяется к гену-регулятору, который непосредственно регулирует деятельность структурных генов. В результате прекращается работа генов, а следовательно, и синтез белка. Если, однако, в клетку попадает некое вещество, индуктор, для построения которого нужен фермент, то репрессор соединяется с ним, освобождая ген-оператор. Начинается синтезирование информационной РНК, служащей матрицей для производства нужного белка. После того как вещество-индуктор полностью израсходуется, репрессор, непрерывно производимый геном-регулятором, вновь связывается с геном-оператором - и процесс прекращается. Это хороший пример использования принципов обратной связи на молекулярном уровне.

На основе своей теории Жакоб и Моно смогли более детально объяснить лизогению. Ранее уже было известно, что гены бактериофага читаются в различной последовательности. Эти ученые показали, что при блокировании первых генов полностью прекращается синтез вирусных частиц и вирусная ДНК прикрепляется к бактериальной хромосоме. При этом остальные гены вируса могут и не быть блокированными, а функционировать в бактериальной клетке, придавая ей новые свойства. Это обстоятельство используется сегодня генной инженерией.

Идеи Жакоба и Моно оказали в 60-е годы большое влияние на развитие молекулярной биологии. В 1965 г, они вместе с А. М. Львовым получили Нобелевскую премию по физиологии и медицине за открытия, связанные с генетической регуляцией синтеза белка у бактерий.

В возникновении молекулярной генетики как науки большую роль сыграли исследования простейших живых организмов - вирусов. Особо важным моментом в развитии этой науки было изучение бактериофагов - вирусов бактерий. Исключительные заслуги в этой области имеют: Макс Дельбрюк, Алфред Дей Херши и Сальвадор Эдуард Лурия - физик, биохимик и врач, которые превратили учение о бактериофагах в науку.

Еще в 1939 г. Дельбрюк вместе с Эмори Леоном Эллисом изучили процесс размножения фагов. Было обнаружено, что он состоит из трех периодов: прикрепление фага к бактериям, скрытый период, в течение которого фаг размножается в клетке, и, наконец, период распада, ведущий к уничтожению бактерии и выделению в большом количестве новых фагов. Этот процесс наглядно показывал, как внешнее генетическое влияние может коренным образом изменить функции живой клетки. Еще в середине 30-х годов было известно, что вирусы являются нуклеопротеидами, подобными хромосомам высших организмов. Поэтому они представляли большой интерес в качестве модели для изучения функций гена. Именно это и побудило Дельбрюка заняться в 1939 г. бактериофагами.

Полный цикл размножения бактериофагов продолжается около 15 мин, причем один вирус дает сотни потомков. Очевидно, это значительно ускоряет исследования, и простое устройство фагов, раскрытое Лурией, позволяло испытать новые методы исследования. В 1946 г. Дельбрюк, Херши и другие ученые открыли явление рекомбинации генов у вирусов, что позволило построить генные карты. В 1952 г. Херши методом меченых атомов доказал, что только ДНК имеет значение для репликации вирусов. Хотя о роли ДНК стало известно еще из экспериментов Эйвери, лишь после работы Херши резко изменились взгляды на природу генов. Лурия открыл комплекс ферментов и особые состояния клетки, когда она может противостоять бактериофагу. Это имело большое значение для развития генной инженерии.

В конце 50-х и в 60-е годы многие ученые стали лауреатами Нобелевской премии за достижения в области генетики. Однако основополагающие работы трех патриархов современной молекулярной генетики (М. Дельбрюка, А. Херши и С. Лурии) получили признания Нобелевского комитета с большим опозданием: они были удостоены Нобелевской премии по физиологии и медицине лишь в 1969 г.

Исследования бактериофагов показали, что они способны присоединяться к генетическому аппарату бактерии, становясь частью ее гена. В результате клетка не погибает, а продолжает размножаться и даже приобретает новые свойства. Вскоре подобные особенности были замечены и у других вирусов, в частности у так называемых онкогенных вирусов.

Еще в 1911 г. Фрэнсис Роус (Раус) совершенно точно установил, что один из видов саркомы у птиц (саркома Рауса) вызывается вирусом. В 1965 г. Ренато Дульбекко, итальянский ученый, работавший в США, заметил, что вирус полиомиелита может присоединяться к клеточной ДНК, становясь ее составной частью. Обычно этот вирус вызывает инфекцию, но в культурах тканей приводит к неопластической трансформации. Это явилось убедительным аргументом в пользу вирусной теории раковых заболеваний. Однако выяснилось, что у большинства "подозрительных" онкогенных вирусов основным генетическим материалом является РНК. К числу таких вирусов относился вирус саркомы Рауса. Оставалось неясным, как вирусы, содержащие РНК, могут присоединяться к клеточной ДНК высших организмов.

Пытаясь разрешить этот вопрос, Хоуард Мартин Темин из Висконсинского университета предположил в 1970 г., что возможен процесс обратной транскрипции*. Одной из важнейших основ молекулярной генетики (ее "центральной догмой") было представление, что наследственная информация движется только по линии ДНК - РНК - белок. Темин предположил, что вирусная РНК транскрибируется в ДНК, которая присоединяется к клеточному геному.

* (Первые исследования возможности обратной передачи генетической информации от РНК к ДНК провел в 1961 г. советски," генетик Сергей Михайлович Гершёнзон.- Прим. ред.)

Вначале эта точка зрения была встречена в штыки. Но в 1970 г. Темин одновременно с Дейвидом Балтимором из Массачусетского технологического института открыл фермент РНК-зависимую ДНК-полимеразу, или обратную транскриптазу. Именно этот фермент осуществляет синтез ДНК на матрице вирусной РНК.

Открытие обратной транскрипции и присоединения вирусов к клеточному геному вселило в ученых надежды на новые успехи медицины. Вместе с тем указанные открытия имели и большое чисто теоретическое значение, позволив глубже проникнуть в молекулярные механизмы генетики. За свои достижения Д. Балтимор, Х. Темин и Р. Дульбекко были удостоены в 1975 г. Нобелевской премии по физиологии и медицине.

Генная инженерия

В начале 50-х годов известный вирусолог Сальвадор Лурия столкнулся с интересным явлением: фаги, выращиваемые на одном штамме бактерий, не развивались на другом. Было установлено, что причины этого не в генетическом различии фагов. Осталось исследовать возможность того, не принимают ли их бактерии различным образом. За этим, несомненно, стоял какой-то ферментативный процесс, но его сущность оставалась неясной до 1962 г., когда данным вопросом занялся Вернер Арбер из Биологического центра Базельского университета.

Вместе со своими сотрудниками он исследовал и сформулировал принципы так называемой штаммоспецифичной рестрикции и модификации ДНК. Оказалось, что при вхождении вируса в бактерию на него действует ферментативный аппарат, связанный с бактериальной ДНК (генным комплексом). Специальные ферменты (рестриктазы) атакуют и разрывают вирусную ДНК, ограничивая таким образом ее размножение и функционирование. В этом и состоит суть рестрикции. Дальнейшие исследования показали, что рестриктазы "распознают" определенные участки ДНК и прикрепляются к ним, чтобы разорвать цепь.

Рестрикция оказалась эффективным средством обезвреживания бактериофагов. Она позволяет, однако, уничтожать только некоторые разновидности фагов. Отдельные фаги приспосабливаются к определенным штаммам бактерий и обходят этот механизм, благодаря чему они существуют и размножаются. Арбер открыл возможные пути преодоления рестрикции. Он установил, что в бактерии имеется и другой фермент, который модифицирует химически определенный участок ДНК, подавляя действие рестриктаз. Результаты швейцарского ученого в принципе имели важное значение, но казались далекими от практического применения. Открытые им "молекулярные ножницы" разрывали цепь ДНК неспецифично, так что не возникало возможности изолировать определенный участок. Ферменты прикреплялись в одном месте цепи ДНК, а разрывали ее в другом.

После Арбера этой новой, интригующей областью молекулярной генетики и энзимологии заинтересовались многие ученые. Подобные ферменты были обнаружены и в других микроорганизмах. В 1970 г. Гамильтон Смит из университета Джона Гопкинса в Балтиморе обнаружил, что рестриктаза микроорганизмов одного вида у другого вида микроорганизмов разрывает ДНК точно в том месте, где фермент прикрепляется. Это удачное открытие вызвало взрыв активности среди ученых. К 1975 г. различным группам исследователей удалось выделить свыше 50 рестриктаз, а сегодня их получены уже сотни. Все они распознают и отрывают от ДНК участок, состоящий из 4-6 пар нуклеотидов. Многие рестриктазы дают возможность разрывать ДНК в разных точках и разделять ее на различные фрагменты, содержащие определенные гены. Эти ферменты использовались не только для выделения генов, но и для составления генных карт. Такая работа была проведена в 1971 г. Даниэлем Натансом.

Этот ученый в течение многих лет исследовал на обезьянах один из вирусов и с помощью рестриктаз установил конкретно последовательность действия различных генов; в конечном счете он разобрался и в системе упорядоченности всех 5 тысяч пар нуклеотидов в двойной спирали ДНК вируса. Это было достигнуто с помощью 14 рестриктаз. (Для сравнения можно сказать, что ДНК человека и других высших животных имеет, по всей вероятности, свыше миллиона нуклеотидов.)

В 1972 г. Даниэль Натане стал директором отдела микробиологии медицинского факультета университета Джона Гопкинса, где работал ассистентом Гамильтон Смит. Вместе со своими сотрудниками Натане разработал эффективный метод выделения в чистом виде фрагментов ДНК с помощью электрофореза. Таким образом, ученые уже имели "молекулярные ножницы", вырезающие нужные фрагменты из ДНК, и владели методами выделения этих фрагментов. Осталось найти "транспортное средство", которое позволило бы вводить выделенные гены в клетку.

Такие механизмы, в сущности, были давно известны ученым. Еще в 40-50-х годах, когда закладывались основы бактериальной генетики, было открыто явление транедукции (переноса генов из одной клетки в другую с помощью вируса). Ген прикрепляется к ДНК вируса, которая впоследствии становится частью хромосомы бактерии. Разумеется, этот механизм действовал лишь у вирусов, которые не уничтожают клетку сразу. Другой механизм связан с процессом полового размножения бактерий. Клетки нормально обмениваются генетическим материалом с помощью плазмид (небольших частиц, содержащих фрагменты ДНК). Если ввести в плазмиды какой-либо ген, то они превращаются в отличное "транспортное средство", переносящее ген в бактерии.

Создание и развитие генной инженерии, как и любой новой области науки, было результатом деятельности большого числа ученых и групп исследователей. Но всегда среди многих можно выделить лиц, внесших решающий вклад. Вернер Арбер открыл рестриктазы, Гамильтон Смит выделил первые рестриктазы, а Даниэль Натане создал метод выделения генов и провел с помощью рестриктаз полное исследование вирусного генома. За свои замечательные научные достижения трое названных исследователей были удостоены в 1978 г. Нобелевской премии по физиологии и медицине.

В числе основоположников генной инженерии стоит и имя Пола Берга из Станфордского университета. В 1972 г. путем химического воздействия он сумел соединить ДНК двух вирусов, получив молекулярный гибрид. Эта методика оказалась очень полезной, так как дала возможность присоединять различные гены к вирусу, используя его как транспортное средство для проникновения в клетку. Таким образом, возникли предпосылки для создания генных "библиотек". Гены, выделенные из самых различных организмов, могут вводиться в клетки бактерий с помощью фагов или плазмид и размножаться вместе с бактериями. Эти бактерии служат фондом генной "библиотеки", и при необходимости из них всегда можно извлечь ген, представляющий интерес для исследователя. Кроме того, гены, перенесенные в необычную среду, начинают действовать по-иному, и это создает возможность для изучения механизма их регуляции.

Важной проблемой в молекулярной биологии является определение нуклеотидной последовательности в ДНК. Больших успехов в этой области добился Фредерик Сенгер, опытный экспериментатор, который в середине 50-х годов разработал метод определения аминокислотной последовательности белков и в 1958 г. получил Нобелевскую премию по химии за определение структуры инсулина.

В 1965 г. Сенгер начинает в Кембридже (где он постоянно работал) исследование структуры нуклеиновых кислот, в частности первичной структуры (нуклеотидной последовательности). С этой целью использовались меченые атомы, что позволило работать с ничтожно малым количеством экспериментального материала - порядка микрограммов. Исследовалась реакция синтезирования второй комплементарной цепи, меченной радиоактивным фосфором, на матрице однониточной ДНК. Она осуществлялась в ходе четырех параллельно идущих опытов, в которых у каждого нуклеотида прерывался рост цепи. Полученные фрагменты ДНК разделяются с помощью электрофореза, что дает возможность точно определить длину конечного полинуклеотида. В каждом из четырех опытов реакция останавливалась соответственно на аденине, гуанине, цитозине и тимине. Зная фрагменты и число нуклеотидов в них, можно точно определить место каждого из этих оснований в молекуле ДНК.

Этот метод Сенгер с сотрудниками применили в 1977 г. для определения положения 16 500 нуклеотидов в ДНК митохондрий человека. Эти клеточные субстанции, генераторы энергии клетки, имеют собственную ДНК и относительную автономию. Предполагается, что они, как и хлоропласты, произошли от симбиотических микроорганизмов, приспособившихся к жизни в клетке. В группе, руководимой Сенгером, были разработаны и другие методы исследования нуклеиновых кислот, с помощью которых еще в 1967 г. удалось определить нуклеотидную последовательность одного из видов РНК, состоящей из 120 нуклеотидов, а в 1977 г. на двух страницах английского журнала Nature был напечатан петитом список всех 5375 нуклеотидов ДНК фага ФХ174: химическая формула бактериофага.

В 1977 г. Уолтер Гилберт из Гарвардского университета предложил новый метод определения места нуклеотидов, основанный на разрыве ДНК по определенному нуклеотиду. Начало этому методу было положено еще, в 1966 г. совместной статьей Гилберта, его сотрудника Э. Максама и советского ученого А. Д. Мирзабекова*. Советские ученые внесли значительный вклад в развитие этой методики. А. Д. Мирзабеков, А. М. Колчинский и А. Ф. Мельникова предложили метилировать аденин и гуанин, после чего разрывать ДНК, используя реакции с метилированными соединениями. Гилберт и Максам развили метод и открыли отдельные реакции, которые разрывают ДНК в определенных местах у каждого из четырех оснований. При этом получаются фрагменты, которые исследуются также методом электрофореза.

* (Принцип метода впервые наметил член-корреспондент АН СССР Е. Д. Свердлов, который предложил способ определения двух оснований - аденина и гуанина - в нуклеиновых кислотах.- Прим. ред.)

Предварительным этапом в определении нуклеотидной последовательности является разрезание ДНК с помощью рестриктаз. Образующиеся фрагменты состоят из нескольких тысяч нуклеотидов, которые, в сущности, представляют собой отдельные гены. Так, шаг за шагом раскрывается молекулярная структура ДНК бактерий, растений и животных. Со временем, вероятно, будет определена и нуклеотидная последовательность ДНК человека, для записи которой потребуется, по-видимому, несколько томов. Тогда, быть может, и претворятся в жизнь слова Винера о "передаче человека по телеграфу".

Современные научные исследования-это, как правило, плод коллективного труда. Нобелевская премия, однако, индивидуальна, и ею награждаются лишь главные участники и вдохновители исследований. Пол Берг, Фредерик Сенгер* и Уолтер Гилберт были удостоены Нобелевской премии по химии в 1980 г., и это символизировало признание крупных успехов, достигнутых многими учеными в области генной инженерии и молекулярной генетики.

* (Ф. Сенгер первым среди ученых дважды получил Нобелевскую премию по химии.- Прим. ред.)

В начале 1981 г. процесс выделения генов и получения из них различных цепей был автоматизирован. Генная инженерия в сочетании с микроэлектроникой предвещает чудо XXI в., когда человек, вероятно, научится управлять живой материей так же, как сегодня он управляет неживой. Дорогу к этому прокладывают современные опыты по молекулярной рекомбинации ДНК, которые позволяют получать невиданные гибриды и самые неожиданные сочетания генов.

Важные уточнения, касающиеся строения генома, были сделаны американским генетиком Барбарой Макклинток, которая с 1942 г. работает в известной лаборатории Колд Спринг Хабор.

Вся научная деятельность этой исследовательницы связана с генетикой кукурузы. (Следует заметить, что для генетиков это растение является таким же классическим объектом исследования, как и дрозофила.) Барбара Макклинток пыталась выяснить, чем объясняется различный цвет зерен кукурузного початка. После сложных генетических анализов она пришла к выводу, что геном кукурузы содержит подвижный ген - когда он "прыгает" на другое место, подавленный ген, регулирующий окраску, проявляет свое действие, и зерно окрашивается.

Сообщение о том, что в геноме организма имеются элементы с непостоянным местом, вызвало определенный интерес в научных кругах, но в целом специалисты не обратили на него особого внимания. Однако в середине 70-х годов транспозоны были заново открыты - теперь уже методами молекулярной генетики - советским ученым Г. П. Георгиевым. Вскоре экспериментаторы научились выделять подвижные гены "ин витро". Можно сказать, что генетики действительно находятся на пути к "конструированию" живых существ. И начало этой новой области науки было положено более чем 30 лет тому назад на опытном поле Барбары Макклинток, где она выращивала кукурузу. За открытие подвижных элементов генома Б. Макклинток была удостоена в 1983 г, Нобелевской премии по медицине и физиологии.

предыдущая главасодержаниеследующая глава










© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2001-2019
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://physiclib.ru/ 'Библиотека по физике'

Рейтинг@Mail.ru
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь