Библиотека по физике Библиотека по физике
Новости    Библиотека    Энциклопедия    Биографии    Ссылки    Карта сайта    О сайте


07.04.2014

Осажденный графен

Корейские ученые открыли метод промышленного производства монокристаллов графена заданной площади. Исследование опубликовано в журнале Science.

Лист графена. Фото: Vincenzo Lombardo / Getty Images / Fotobank.ru
Лист графена. Фото: Vincenzo Lombardo / Getty Images / Fotobank.ru

Графен — аллотропная модификация углерода. Идеальный кристалл графена представляет собой однослойную решетку из атомов, выстроенных шестиугольниками. Такой материал обладает чрезвычайно высокой проводимостью, прочностью и гибкостью, но получить его непросто. Химические методы обычно не дают достаточной площади кристалла, а механические слишком трудоемки, чтобы говорить о серийном производстве. Кроме того, большинство способов приводит к дефектам: разбросанным по решетке кольцам из пяти или семи атомов.

При этом графен — первый по-настоящему двумерный кристалл. Он обладает множеством интересных свойств. Среди всех известных материалов у графена наибольшая подвижность электронов — во много раз превосходящая таковую у кремния, на котором строится вся современная микроэлектроника. Так что желание инженеров как-нибудь применить его вполне понятно — если бы только нашелся способ производить материал в промышленных масштабах.

Ученые из Университета Сонгюнгван в Сеуле и лаборатории SAIT, принадлежащей корпорации Samsung, похоже, такой способ нашли. В начале апреля они представили метод выращивания монокристалла графена на полупроводниковой пластине из кремния. Новый процесс позволяет получать крупные цельные пленки с минимумом дефектов. Кроме того, силиконовую «подложку» можно использовать повторно, в отличие от более ранних экспериментов с медной пластиной.

Технически процесс выглядит примерно так: кремниевая пластина (обычный «расходный материал» для микроэлектроники) покрывается слоем германия, а затем погружается в раствор плавиковой кислоты. Это отделяет от германия естественным образом возникшие оксидные группы, оставляя на месте атомы водорода.

Затем на пластине осаждается графен — для этого используется распространенный в индустрии полупроводников CVD-процесс (химическое парофазное осаждение). После серии нагреваний и охлаждений в вакууме графеновую пленку можно будет снять с подложки и пустить в производство, например, транзисторов, а пластину использовать для изготовления следующего кристалла.

В корпорации Samsung, финансировавшей исследование, считают эту находку настоящим прорывом и говорят о новом поколении гибких дисплеев, носимой электроники и других гаджетов, которые станут возможными благодаря новой технологии.

Первым шагом в переводе микроэлектроники с кремния на углерод должно стать появление эффективных полевых транзисторов. Это тоже нетривиальная задача: графен обладает высокой проводимостью, но заставить кристалл менять ее в достаточном для кодирования двоичного сигнала диапазоне оказалось крайне сложно. Однако инженеры SAIT утверждают, что успешно изготовили из полученного графена сравнительно работоспособные транзисторы.

Даже в качестве простого проводника, однако, графен уже нашел применение в микроэлектронике. В конце 2013 года компания IBM продемонстрировала гибридную кремний-углеродную микросхему для радиомодема, созданную по обычному техпроцессу силиконовых чипов.

Артем Асташенков


Источники:

  1. rusplt.ru




Пользовательского поиска




Физики превратили непроводящий полимер в полупроводник силой звука

Десять невозможных вещей, ставших возможными благодаря современной физике

Физики нашли возможную брешь в Стандартной модели

Ученые объяснили звуки метеоров

Теория эмерджентности: что такое реальность?

Ученые математически доказали недостижимость абсолютного нуля температуры

Четыре крупнейших ошибки в научной жизни Эйнштейна






© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2001-2017
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://physiclib.ru/ 'PhysicLib.ru: Библиотека по физике'

Рейтинг@Mail.ru