Ранее было высказано мнение, что система дверных ключей в нашем институте сложнее, чем теория поля. Это явное извращение фактов, и чтобы его опровергнуть, в настоящем сообщении мы излагаем упрощенную теоретическую схему, на основе которой создавалась эта система.
Начнем с определений.
Ключ состоит из стержня, на котором укреплены штифты.
Замок состоит из щели с отверстиями, расположенными соответственно позициям штифтов на стержне ключа. Кроме того, в замке имеется система рычажков, находящихся позади отверстий (см. рисунок).
Введем теперь следующие три аксиомы:
1. Штифты поворачивают рычажки; для того чтобы замок открылся, все рычажки в замке должны быть повернуты.
2. Если в данной позиции нет штифта, отверстия или рычажка, мы будем говорить в дальнейшего наличии в данной позиции антиштифта, антиотвер стия или антирычажка соответственно.
3. Ни в одном замке нет рычажков за антиотверстиями, ибо такой замок нельзя было бы открыть.
Пусть штифты, отверстия и рычажки описываются значением 1 переменных аi, Ьi и сi соответственно. Индекс i - номер позиции. Антиштифты, антиотверстия и антирычажки соответствуют значению 0 тех же переменных. Определим теперь матричное умножение следующим способом:
(1)
где символическое произведение abc=a, если одновременно c≤b и a≥c, в противном случае abc=l-а. Отсюда следует, что если (а1, a2...ak) есть собственный вектор оператора
то ключ может отпереть замок.
Используя этот формализм, легко найти полное число ключей, которые открывают данный замок . Оно равно
(2)
а число замков, которые могут быть открыты данным ключом (а), равно
(3)
При получении этих выражений учитывался тот факт, что замок есть тривиальный антизамок. В уравнениях (2) и (3) k есть сумма коэффициентов Клебша - Гордана, равная единице.
Развитый выше формализм позволил решить следующую задачу. Пусть некто хочет пройти из некоторой комнаты А через несколько дверей в произвольную комнату В. Число ключей, необходимое для этого, максимизировалось при произвольном выборе комнат А и В. (Проблема минимизации не решалась, поскольку ее решение тривиально - одинаковые замки.) Затем сотрудники института были разбиты на ряд подгрупп, и система ключей строилась таким образом, чтобы одновременно выполнялись два условия:
1) ни одна подгруппа не в состоянии открыть все те замки, которые могут быть открыты любой другой подгруппой;
2) трансформационные свойства групп соответствуют возможности одалживания ключей.
Создатели системы ключей надеялись, что она является единственно возможной и полной, и до известной степени это справедливо. Однако оказалось, что ключи, которые не должны были бы открывать некоторые двери, открывают их, если их вставлять в замок не до конца. Например, ключ (11111) может открыть замок в n=5 различных положениях. Число п было названо странностью системы ключ - замок. Экспериментальными исследованиями было найдено, что наша система ключей является весьма странной. Однако этот недостаток можно исправить, если потребовать для последней позиции соблюдения равенств аk = bk = ck = 1. Будем надеяться, что при ближайшем пересмотре системы ключей в нее будет внесено это исправление.
На отмычки настоящее исследование не распространяется.
Автор выражает благодарность сотрудникам, работающим в разных группах, за горячее обсуждение затронутых проблем.
* * *
Номограмма распределения времени на разных стадиях научной карьеры
Пример применения: отрезки горизонтальной пунктирной линии показывают, что молодые специалисты тратят время в основном на работу; на конференции и лекции времени остается мало.