Стану ли я отказываться от своего
обеда только потому, что я не полностью
понимаю процесс пищеварения?
О. Хэвисайд (один из создателей операционного исчисления)
Поиски истины
Яркое представление о работе физиков дает история зарождения и развития квантовой теории. Мы увидим в действии множество методических особенностей научной работы, о которых говорилось в главе "О психологии научного творчества". Но, может быть, самое интересное, что все важнейшие результаты теории возникали до того, как становился ясен физический смысл сделанных предположений! Понимание возникало постепенно, по мере продвижения вперед.
Вы уже могли заметить из наших кратких обсуждений, что частная теория относительности и теория тяготения создавались совсем иначе. Там глубокие и ясные физические идеи предшествовали законченной теории. Может быть, это был последний взлет классической науки прошлого века.
Для XX века характерно именно движение вперед без прочных оснований, через смутные догадки, которые постепенно уточняются и заменяются другими. Словом, метод проб и ошибок, который мы уже прослеживали на примере открытия кварков. В рассказах о важных открытиях обычно не говорят о неправильных догадках или говорят вскользь, и история науки представляется сплошной чередой оправдавшихся озарений. Разумеется, это не так. Было много блужданий в потемках, путь часто уводил в сторону... Когда обнаружили кажущееся несохранение энергии при р-распаде, до того, как стало ясно, что часть энергии уносит нейтрино, некоторые физики предполагали, что закон сохранения энергии нарушается в отдельных актах и выполняется только в среднем.
Конечно, анализ удач приносит больше, чем изучение ошибок. Мы не занимаемся сейчас историей физики, а лишь пытаемся почувствовать ход идей, поэтому ограничимся удачами.
Начало квантовой эры
Нам достались в наследство от прошлого века среди прочих два великих парадокса: противоречия эфира и "катастрофа Рэлея-Джинса". Первый парадокс устранила теория относительности. Второй привел к зарождению квантовой теории.
В 1900 году Макс Планк задался целью понять причины странного распределения по частотам интенсивности электромагнитного излучения, которое находится в тепловом равновесии в ящике с нагретыми стенками ("черное" излучение). Нужно было объяснить эмпирический закон Вина - интенсивность излучения при большой частоте света экспоненциально падает с увеличением частоты,- между тем как по классической статистике плотность энергии должна расти с частотой. Мы уже упоминали о "катастрофе Рэлея - Джинса" в начале второй главы.
Планк обнаружил, что единственная возможность объяснить парадокс - предположить, что частицы, излучающие волны с частотой со, могут изменять свою энергию только дискретными порциями Δ E = hω. Коэффициент пропорциональности h вошел в науку как постоянная Планка - нам уже не раз приходилось говорить о ней.
Предположим, что стенки ящика содержат набор излучателей всевозможных частот. Как будут возбуждены излучатели в тепловом поле? Излучатели малой частоты будут вести себя, как полагается по правилам классической статистической физики, для них скачкообразность энергии несущественна. Все они приобретут энергию, соответствующую температуре стенок. Но излучатели, имеющие большую частоту, для которых hω много больше, чем средняя тепловая энергия, почти все будут с наинизшей энергией. Только очень малая доля будет возбуждена. Чтобы их возбудить, нужно передать им энергию hω, а с помощью столкновений нельзя передать энергию, много большую, чем средняя тепловая энергия частицы. Вероятность такого события экспоненциально мала. Эти излучатели как будто заморожены, и поэтому экспоненциально мала интенсивность испускаемого ими света. Так объясняется закон Вина. Основываясь на предположении о дискретном изменении энергии излучателей, Планк получил формулу, описавшую экспериментальное распределение интенсивности для всех частот в зависимости от температуры стенок. Для согласия с опытом достаточно было только правильно подобрать константу h. Так было получено численное значение этой величины: h ≅ 10-27 эрг*с. Понятно, почему скачкообразность излучателей не проявляется в других случаях - порции энергии так малы, что изменение энергии кажется непрерывным.
Волна или частица?
Следующее важное событие произошло в 1905 году - появилась замечательная работа Эйнштейна по теории фотоэффекта: вырывания электронов из атома при облучении. В этой работе было показано, что фотоэффект можно объяснить, только предположив, что свет представляет собой набор частиц-фотонов, которые, ударяясь об электрон, выбрасывают его из атома. Представление о свете как о волне не могло объяснить той концентрации энергии на одном электроне, которая необходима для его вырывания.
Эйнштейн показал, что при поглощении или рождении кванта света - фотона - одновременно исчезает или появляется количество движения p = hω/c. Таким образом, фотон имеет импульс (количество движения), связанный с длиной волны λ соотношением р = 2πh/λ.
Здесь мы использовали известную связь частоты ω с длиной волны λ, ω = 2πc/λ.
Энергия волны заданной частоты может изменяться только порциями hω, аналогично тому, как изменялась энергия излучателей в рассуждении Планка. Дискретность распространилась и на электромагнитные волны. Более того, формула Планка получается из предположения, что электромагнитное излучение в ящике есть газ частиц-фотонов, находящийся в тепловом равновесии со стенками. Кстати, Эйнштейн получил Нобелевскую премию 1922 года именно за теорию фотоэффекта, а не за свой главный духовный подвиг - теорию относительности и теорию тяготения.
В некотором смысле точка зрения Эйнштейна означала возврат к ньютоновой теории корпускул. Опять возник вопрос, на который не смог ответить Ньютон: как объединить оба представления - о волновой природе света, доказанной опытами по интерференции и дифракции, и о корпускулярной, необходимой для понимания фотоэффекта. Возник важный парадокс - "дуализм волн-частиц".
Постулаты Нильса Бора
В 1913 году вышла в свет знаменитая работа Нильса Бора, в которой он распространил на атом дискретность возможных значений энергии излучателей, предложенную Планком для объяснения свойств равновесного излучения,- допустимы не все орбиты, а только некоторые. Бор установил правила для нахождения допустимых орбит электрона.
С классической точки зрения электрон, вращающийся вокруг ядра (планетарная модель атома), должен излучать электромагнитные волны. Ведь, вращаясь, электрон движется с ускорением, а по законам классической механики не излучает только заряд, движущийся по прямой с постоянной скоростью.
Согласно правилам Бора электрон может излучать свет только при переходе с одной орбиты на другую, причем порциями с частотой ω = (En - Em)/h. Здесь Еn и Еm - возможные значения энергий n-той и m-той орбит.
Есть орбита с наименьшей возможной энергией, в этом состоянии электрон живет неограниченно долго - ему некуда переходить. Так объяснялась стабильность атома. Боровские правила квантования объяснили тот удивительный факт, что атомы испускают свет строго дискретных частот, и позволили выразить эти частоты через заряд ядра, заряд и массу электрона и постоянную Планка.
Таким образом, теория описывала все главнейшие свойства атомов, хотя смысл правил квантования Бора оставался загадочным. Недаром Нильс Бор назвал свои правила "постулатами" - недоказанными предположениями.
Их смысл стал ясен только после создания квантовой механики.
Правила квантования Бора - одно из удивительнейших явлений в истории науки. Только гениальным озарением можно объяснить появление этой теории в то время на таких шатких основаниях! Эйнштейн сказал по этому поводу: "Это высшая музыкальность в области теоретической мысли".
Догадка де Бройля
Лишь в 1923 году произошло событие, которому суждено было объяснить смысл правил квантования. Но сначала оно только обострило проблему волн-частиц. Французский физик Луи де Бройль предположил, что частицы обладают таким же дуализмом, как и свет; частицы должны описываться волновым процессом с длиной волны λ, так связанной с количеством движения р, как и длина волны световых частиц - фотонов: λ = 2πh/р.
Уже через четыре года это удивительное предсказание было подтверждено опытом. К. Дэвиссон, Л. Джермер и Дж. П. Томсон открыли дифракцию электронов на кристаллах. Электрон действительно ведет себя как волна!
Подтвердилась не только волновая природа электрона, но и в точности формула де Бройля для длины электронной волны. История повторилась в обратной последовательности: в случае света была сначала изучена волновая природа, а затем корпускулярная, а у электрона - наоборот.
Квантовая механика
Следующий шаг - важнейшее обобщение догадки де Бройля. В 1926 году Эрвин Шрёдингер получил свое знаменитое уравнение для волновой функции (ψ-функции) частицы, движущейся во внешнем поле. В свободном пространстве - это уравнение для волн с постоянной длиной. Его решение и есть волна де Бройля. Но во внешнем поле, например, в кулоновском поле ядра, длина волны изменяется от точки к точке. Особенно просто найти это уравнение для медленно изменяющегося поля. Тогда и длина волны изменяется медленно, и в каждой точке она определяется формулой де Бройля, но с изменяющимся от точки к точке импульсом р (r). Его можно найти из выражения для энергии:
E = p2(r)/2m + U(r).
Первое слагаемое здесь - кинетическая энергия, второе слагаемое - потенциальная. Уравнение Шрёдингера легко получается из уравнения для волн де Бройля, в которое входит слагаемое р2ψ,- надо только заменить в нем импульс р на р (r). Наверное, подобные соображения и помогли Шрёдингеру найти это замечательное уравнение.
Оказалось, что решение уравнения Шрёдингера для атома водорода получается в согласии с правилами квантования Бора не для всех энергий, а только для дискретных значений, совпадающих с теми, которые следовали из боровских правил. Объяснились многие детали устройства атомов, которые не объяснялись постулатами Бора. Стал ясен и смысл правила квантования - оно означает, что в области движения электрона должно укладываться целое число волн де Бройля. Но об этом мы подробно поговорим еще в следующих разделах и даже найдем решения упрощенного уравнения Шрёдингера для разных случаев.
За несколько месяцев до Шрёдингера Вернер Гейзенберг предложил другой вариант квантовой теории. Он, исходя из принципа наблюдаемости, представил величины как совокупность всех возможных амплитуд перехода из одного состояния квантовой системы в другие. Сама вероятность перехода пропорциональна квадрату амплитуды, точнее, квадрату модуля амплитуды- это уточнение для тех, кто знаком с комплексными числами. Именно такие амплитуды перехода и наблюдаются на опыте. В таком представлении каждая величина имеет два значка, определяющих начальное и конечное состояния системы. Эти величины называются "матрицами". Так, координате q соответствует матрица - совокупность матричных элементов qmn , где n и m - два состояния системы. Гейзенберг получил замкнутые уравнения, из которых в принципе можно найти все наблюдаемые величины. Однако в своей первоначальной форме матричная механика Гейзенберга казалась неоправданно сложной по сравнению с волновой механикой Шрёдингера. Уже в 1926 году Шрёдингер показал полную эквивалентность обоих подходов. Матричная и волновая механики объединились в квантовую.
Сейчас физики запросто обращаются с матрицами, уравнения для матриц не кажутся сложными. Но для того, чтобы получить аналитические результаты, удобнее, как говорят, перейти в координатное представление и вместо уравнения для матриц решать уравнение Шрёдингера.
Даниил Данин в книге "Вероятностный мир" описывает во всех деталях и с удивительной поэтичностью всю драму зарождения квантовой механики. Там приводится поучительный рассказ: "Летом 25-го года, когда волновой механики еще не существовало, а матричная только-только появилась на свет, два геттингенских теоретика пошли на поклон к знаменитому Давиду Гильберту - признанному главе тамошних математиков. Бедствуя с матрицами, они захотели попросить помощи у мирового авторитета. Гильберт выслушал их и сказал в ответ нечто в высшей степени знаменательное: всякий раз, когда ему доводилось иметь дело с этими квадратными таблицами, они появлялись в расчетах "как своего рода побочный продукт" при решении волновых уравнений.
- Так что, если вы поищете волновое уравнение, которое приводит к таким матрицам, вам, вероятно, удастся легче справляться с ними.
По рассказу американца Эдварда Кондона, то были Макс Борн и Вернер Гейзенберг. А заканчивается этот рассказ так: "Оба теоретика решили, что услышали глупейший совет, ибо Гильберт просто не понял, о чем шла речь. Зато Гильберт потом с наслаждением смеялся, показывая им, что они могли бы открыть шредингеровскую волновую механику на шесть месяцев раньше ее автора, если бы повнимательней отнеслись к его, гильбертовым, словам".
На этом закончился первый этап развития квантовой механики. Несмотря на все успехи новой механики, оставался нерешенным главный вопрос: что же такое волновая функция, основной инструмент теории?
Координата или скорость?
В 1927 году Вернер Гейзенберг сделал важнейший шаг на пути к пониманию физического смысла новой механики. Анализируя возможности измерения координаты и импульса электрона, он пришел к заключению, что условия, благоприятные для измерения положения, затрудняют нахождение импульса и наоборот - в этом смысле эти два понятия дополнительны друг другу. Для доказательства он пользовался мысленными экспериментами. Вот краткая схема одного из таких экспериментов.
Для того чтобы определить положение электрона, нужно осветить его светом и посмотреть в "микроскоп". Такой способ определения координаты дает неопределенность Δq порядка длины волны λ использованного света: Δq ≈ λ.
Для уточнения положения электрона надо брать возможно меньшую длину волны света. Но это палка о двух концах. При взаимодействии с электроном свет передает ему импульс. Чтобы уменьшить передаваемый импульс, можно ослабить интенсивность света так, чтобы с электроном взаимодействовал один фотон. Минимальный передаваемый электрону импульс будет порядка импульса одного кванта, этот импульс связан с длиной волны соотношением р = 2πh/λ, поэтому неопределенность импульса электрона: Δр > 2πh/λ. Умножая на λ и подставляя Δ q вместо λ, получаем:
Δq Δp > 2πh.
Это и есть соотношение неопределенности.
Попробуем измерить координату электрона другим способом - будем пропускать пучок электронов через отверстие в экране; плоскость экрана перпендикулярна пучку. Со светом такой опыт много раз делался, и хорошо известно, что получается. Если за отверстием поместить второй экран, то на нем мы увидим яркое пятно того же размера, что и.отверстие, но края пятна будут размыты, пятно расширяется. Свет у краев отверстия загибается - это результат его волновой природы. Получится пучок световых лучей внутри некоторого угла. Этот угол - угол дифракции - равен Θ = λ/d, где λ - длина волны, a d - диаметр отверстия. Если расстояние от отверстия до второго экрана l, то радиус дифракционного пятна будет R = lΘ ∼ λl/d. Вокруг центрального пятна чередуются концентрические темные и светлые кольца, быстро убывающие по интенсивности.
Загибание световых лучей легко увидеть, если закрыть почти полностью свет лампочки линейкой, держа ее на вытянутой руке. Линейка покажется выщербленной в том месте, где проходит свет. Звуковые волны гораздо длиннее световых, и поэтому звук легко огибает препятствия.
Так как с электроном связан волновой процесс, аналогичная дифракционная картина получится и при прохождении через отверстие пучка электронов. В момент прохождения отверстия поперечная направлению пучка координата электрона будет определена с точностью Δ q ∼ d, где d - диаметр отверстия.
Что будет по другую сторону экрана? По законам дифракции после прохождения отверстия получится пучок волн всех направлений, лежащих внутри дифракционного угла Θ = λ/d. Но теперь λ - это длина волны электрона λ = 2πh/р, где р - импульс электрона в падающем пучке. Отклонение электрона от прежнего направления после прохождения отверстия означает, что электрон получил импульс отдачи Δ р в поперечном направлении, причем
Δ p/p = Θ = λ/d
Подставляя выражение для λ и заменяя d на Δ q, получим опять соотношение Гейзенберга. Проделав большое число таких мысленных экспериментов с тем же результатом, нельзя не прийти к заключению, что мы имеем дело с принципиальным ограничением, которое природа накладывает на понятия координаты и импульса частицы. Этого ограничения не знала классическая физика - оно не вносит изменений в описание больших тел из-за малости h.
Соотношение неопределенности - частный случай и конкретное выражение общего принципа дополнительности, сформулированного Нильсом Бором в 1927 году (см. с. 46). Принципиальная неопределенность некоторых величин есть следствие применения классических понятий к описанию неклассических объектов, квантовая природа микрообъектов дополнительна к их классическому описанию. Но классическое описание результатов наблюдений неизбежно. Все измерительные приборы обязательно классичны, при измерении недопустимы неопределенности, прибор должен давать определенное численное значение измеряемой величины. Особенности наблюдений квантовых объектов мы обсудим немного позже.
Физический смысл волновой функции
Вернемся к нашему опыту с отверстием в экране. Поставим далеко за экраном фотопластинку. Электрон, попадая на нее, вызовет почернение какого-либо зерна эмульсии, после чего его координата определится с точностью до размера зерна. Пучок электронов после дифракции на отверстии зачернит круг с радиусом R = lλ/d. Теперь уменьшим интенсивность пучка электронов так, чтобы каждый электрон падал на пластинку, скажем, раз в минуту. После долгого ожидания получится та же картина, что и при интенсивном пучке. Но электроны падали поодиночке, значит, уже одному электрону следует приписать вероятность попасть в то или иное место. Уже для одного электрона эта вероятность распределена вблизи пластинки так, что она максимальна в центре, слегка убывает от центра к радиусу R, а затем за пределами дифракционного пятна начинает резко убывать.
Проследим, как осуществляется соотношение неопределенности в нашем опыте. На экран падают электроны с очень точно определенным импульсом - их поперечный импульс равен нулю, следовательно, поперечная координата полностью неопределенна - теперь мы можем сказать точнее: вероятность до прохождения отверстия найти электрон в любой точке экрана одинакова. После прохождения отверстия поперечный импульс делается неопределенным, зато поперечная координата становится более определенной. Вероятность найти электрон на фотопластинке вне дифракционного пятна мала, неопределенность поперечной координаты Δ q ~ R.
Анализ такого рода опытов привел Макса Борна (1926) к мысли, что волновая функция описывает вероятность того или иного значения координаты или импульса электрона в зависимости от типа поставленного опыта При этом вероятность определяется квадратом волновой функции. Что помогло прийти к такому заключению?
Вспомним, что теория волновых явлений света - интерференции и дифракции - была разработана задолго до уравнений Максвелла, до того как была понята электромагнитная природа света. Предполагалось только, что источник света испускает волны неизвестной природы, а интенсивность света пропорциональна квадрату той величины, которая колеблется. В современном представлении колеблются во времени и пространстве электрические и магнитные поля и интенсивность света пропорциональна их квадрату. Но почти все волновые проявления не зависят от природы света.
Было естественно и для волн, связанных с частицами, считать, что есть некий волновой процесс, а интенсивность - в нашем случае вероятность - пропорциональна квадрату волновой функции.
Сначала предполагалось, что волновым свойствам частицы соответствует некое реальное физическое поле, подобное электромагнитному полю в световой волне.
Но тогда уже один электрон давал бы в одном акте всю дифракционную картину, между тем он чернит одно зерно. Это только один из доводов; от этого взгляда на природу волнового процесса пришлось отказаться по многим причинам. Таким образом, волновая функция частицы не есть какое-либо физическое поле, она представляет собой запись потенциальных возможностей исхода того или иного последующего наблюдения.
Волновая функция есть максимально полное допустимое описание состояния частицы. Она заменяет классическое состояние, которое задается координатами и скоростями.
Волновая функция, описывающая состояние электромагнитного поля, имеет ту же природу; она не есть электромагнитное или какое-либо другое физическое поле, она определяет только вероятность того или иного значения поля в каждой точке.
Применению квантовой механики к полю посвящен конец этой главы.
Нарушается ли причинность?
Предсказания квантовой механики не дают однозначного ответа, они дают лишь вероятность того или иного результата. Как бы точно мы ни определяли состояние до падения на экран, нельзя предсказать, в какой именно точке фотопластинки окажется электрон. Можно указать только распределение вероятности найти его в той или иной точке.
Не означает ли эта неоднозначность нарушения причинности? Классическая физика не знала неопределенности. Успехи небесной механики в XVII и XVIII веках внушили глубокую веру в возможность однозначных предсказаний. Эту гордость неограниченными возможностями науки выразил Пьер Лаплас (1749-1827): "Дайте мне координаты и скорости всех частиц - и я предскажу будущее Вселенной!" Появление электродинамики не изменило этой веры. Хотя начальное состояние в электродинамике задается не только координатами и скоростями частиц, но и распределением полей,- ее предсказания однозначны.
Предсказания классической статистической физики носят вероятностный характер. Она отвечает, например, на вопрос, какова вероятность найти частицу нагретого газа с той или иной энергией, или, иными словами, предсказывает распределение частиц по энергии. Но есть важное отличие от квантовой механики. Вероятность в статистической физике есть результат сложности системы, результат неточного определения начального состояния. Кроме того, механическая система должна обладать важным свойством - она должна быть "размешиваемой". Это означает, что малая неточность начальных условий за короткое время приводит к размешиванию системы по всей области ее возможных состояний. Но за всем этим стоит однозначность механических законов.
В квантовой механике неопределенность принципиальная, она следует из дополнительности квантовомеха-нических свойств и классического описания. И, кроме того, она проявляется уже для самых простых объектов, для индивидуальных наблюдений за одной частицей.
Главное открытие квантовой механики - вероятностный характер законов Вселенной. На некоторые вопросы нельзя однозначно ответить.
Как мы уже знаем, "задать координаты и скорости всех частиц" невозможно. Самое большее, что можно сделать - задать в начальный момент волновую функцию. Квантовая механика позволяет однозначно найти волновую функцию в любой более поздний момент. Вместо восклицания Лапласа можно произнести с такой же гордостью: "Дайте мне волновую функцию всех частиц - и я предскажу будущее!"
Впрочем, невозможность предсказывать будущее в практической жизни не связана с квантовой неопределенностью. Мы имеем дело с такими сложными системами, в которых определить начальную волновую функцию так же невозможно, как координаты и скорости.
Нильс Бор отмечал, что попытка определить волновую функцию живого объекта немедленно приводит к его гибели. Наше будущее зависит от таких сложных, неопределенных систем, как люди! Но вернемся к физическим законам.
Итак, мы не можем проследить траектории отдельных частиц; причинность в лапласовом смысле нарушена, но в более точном смысле она соблюдается. Из максимально полно определенного начального состояния однозначно следует единственно возможное конечное состояние. Изменился только смысл слова "состояние". Что же делать, если выяснилось, что понятие "состояние", принятое в классической физике, принципиально неосуществимо?
Состояние частицы можно изменить, не прикасаясь к ней!
Невозможность однозначно предсказать исход единичного опыта была настолько непривычна, что вызвала много возражений. Является ли квантовомеханическое описание полным, или необходимо создать более точную теорию, где все было бы однозначно? Не надо ли изменить интерпретацию волновой функции?
Эйнштейн писал в 1936 году: "Это мнение логично и не приводит к противоречиям, но оно настолько противоречит моему научному инстинкту, что я не могу отказаться от поисков более полного понимания".
Многолетний спор Бора с Эйнштейном привел к углублению и уточнению теории измерений в квантовой физике. Дальнейшее развитие до сих пор подтверждало позицию Бора о полноте квантовомеханического описания реальности.
Чтобы понять существо затруднений, нужно разобраться в особенностях квантовомеханических наблюдений.
Прежде всего свойства микроскопических объектов нельзя изучать, отвлекаясь от способа наблюдения. В зависимости от него электрон проявляет себя либо как волна, либо как частица, либо как нечто промежуточное. Разумеется, есть также свойства, не зависящие от способа наблюдения: масса, заряд, спин частицы, барионный заряд, магнитный момент... Но всякий раз, когда мы хотим измерить какие-либо величины, не имеющие определенного значения, результат будет зависеть от способа наблюдения. Это свойство квантовых объектоп В. А. Фок называл "относительностью к средствам наблюдения". Доквантовая физика знала только относительность, связанную с движением,- относительность скорости, относительность формы: быстро движущееся колесо из-за сокращения Лоренца имеет вид эллипса. В квантовой теории результат зависит от того, как и что измерять в одной и той же системе координат.
Мы уже говорили, что причины этого неустранимы- мы вынуждены описывать квантовые объекты на классическом языке. Но так же, как объективность явлений природы не умаляется, а выявляется теорией относительности, относительность к средствам наблюдения в квантовой теории нисколько не затрудняет определение объективных свойств микрообъектов. История развития Вселенной не делается менее объективной от того, что мы описываем ее на нашем человеческом языке. Язык классической физики, на котором говорят наши средства наблюдения и на котором мы формулируем свои мысли, позволяет полностью охарактеризовать свойства микрообъектов. Мы неминуемо, но без потерь пользуемся субъективными инструментами для описания объективного. Карл Вейцзеккер - немецкий физик, много сделавший в теории ядра,- сказал: "Природа существовала до человека, но человек был до естествознания". И вместе с тем слишком частое упоминание слова "наблюдатель" при описании измерений в квантовой механике оставляет неприятное чувство. Мне кажется, от этого легко избавиться - можно не говорить о наблюдателе и под словом "наблюдение" понимать способ выяснить тот или иной вопрос, сформулированный на классическом языке. Мы как бы узнаем форму предмета, изучая его проекции - рассекая его ножом по разным плоскостям.
Вернемся к нашему измерительному прибору - экрану с дыркой. После прохождения отверстия поперечный импульс делается неопределенным. Это и приводит к дифракционному пятну. А что получится, если уточнить импульс отдачи электрона? Для этого нужно сделать такое устройство, чтобы экран вместе с отверстием мог свободно перемещаться в поперечном направлении. Измеряя изменение импульса экрана, мы по закону сохранения количества движения найдем и поперечный импульс электрона. Если импульс отдачи определен очень точно, то положение экрана будет полностью неопределенным, и дифракционная картина исчезнет - любое зерно на фотопластинке может почернеть с одинаковой вероятностью. Электрон будет такой же плоской волной, как и до экрана, только с новым определенным значением импульса.
Теперь вы видите, как работает относительность к средствам наблюдения! От наблюдения за движением экрана зависит характер почернения пластинки. Допустим, экран и пластинка находятся в разных городах. Измеряя в одном городе, я как будто могу повлиять на результат измерений в другом... Не мистика ли? Нельзя ли использовать такое явление для экстрасенсорной связи? Это так важно, что нужно задуматься. А лучший способ думать - получить то же самое другим способом. Ю. Манин говорит в упомянутой нами книжке: "Думать - значит вычислять, волнуясь".
Сделаем еще один мысленный эксперимент. Просверлим в экране второе отверстие на большом расстоянии от первого. И опять посмотрим, что получается, когда на экран падает пучок света. На втором экране мы увидим хорошо известную в оптике интерференционную картину. Помимо двух светлых пятен, против каждого из отверстий получится система светлых и темных кривых, заполняющих плоскость между пятнами. Светлые места будут там, где волны, идущие от каждого из отверстий, складываются, а темные - где они вычитаются. Это и есть интерференция. Если одно отверстие закрыть, вся эта красивая картина исчезнет.
Разумеется, то же самое будет и с электронами. Как бы редко они ни падали, на фотопластинке в конце концов получится интерференционная картина. Если сделать заслонку, закрывающую одно отверстие, на фотопластинке не будет интерференции - будет лишь одно дифракционное пятно.
Здесь проявляется еще одна важная особенность квантовой механики: волновая функция складывается из волновых функций взаимоисключающих событий. Это свойство называется "принципом суперпозиции". Закроем заслонкой одно из отверстий - тогда электрон идет обязательно через другое, и на его волновую функцию заслонка не влияет. Обозначим эту функцию через ψ1. Перенесем заслонку на другое отверстие и обозначим новую функцию через ψ2. Если оба отверстия открыты, волновая функция ψ равна сумме ψ1 и ψ2: ψ = ψ1 + ψ2.Вероятность найти электрон в какой-либо точке пластинки будет
P = |ψ|2 = |ψ1 + ψ2|2.
Если в какой-либо точке ψ1 и ψ2 равны, мы получим вероятность Р = 4|ψ1|2 = 4P1, а если они отличаются по знаку, то Р = 0 - в эти места электроны не попадают. Если отверстия будут открыты попеременно, будут складываться вероятности, а не волновые функции. Соответствующая вероятность будет
P' = |ψ1|2 + |ψ2|2 = P1 + P2.
Интерференция исчезнет, величины P1 и Р2 - положительные и друг друга не погашают. Эти простые формулы поясняют то, что мы получили и без них.
Мы видим, что любая попытка уточнить траекторию, отбирая случаи, когда электрон проходит через одно отверстие, уничтожает интерференцию. Опять и в этом случае наблюдение, сделанное в Москве, как будто влияет на результаты опытов в Париже.
Кроме того, есть еще одна, не меньшая на первый взгляд, странность: после каждого измерения волновая функция изменяется скачком. В самом деле, после измерения импульса отдачи скачком появилась волна с новым импульсом. В этом состоянии до падения на пластинку электрон можно было с одинаковой вероятностью найти в любом месте; после почернения неопределенность его положения скачком за ничтожное время изменилась,- теперь она задается размерами зерна. Это явление имеет красивое название: "редукция волновой функции", или "редукция волнового пакета".
Именно эта странная возможность изменить волновую функцию частицы без воздействия на нее была главным физическим аргументом знаменитой статьи Эйнштейна, Подольского и Розена "Можно ли считать квантовомеханическое описание физической реальности полным?" (1935). Они писали: "...поскольку эти системы уже не взаимодействуют, то в результате каких бы то ни было операций на первой системе, во второй системе уже не может получиться никаких реальных изменений".
Проследим это явление на совсем простом примере, где оно станет тривиальностью. Допустим, мы знаем импульсы двух частиц до столкновения, а после столкновения одна из них пролетает через лабораторию в Дубне, а вторая - через измерительные установки Сакле возле Парижа. Если дубненский физик получит определенное значение импульса, он по закону сохранения количества движения рассчитает импульс парижской частицы. Следовательно, волновая функция этой частицы в результате измерения в Дубне определилась - она соответствует определенному импульсу.
Но это не странно, это обычный случай изменения вероятности предсказаний с каждой новой информацией. Мы задаем вопрос: какова вероятность, что парижанин найдет то или иное значение импульса при условии, что в Дубне нашли определенный импульс. Это означает, что нужно взять весь набор многократных измерений импульса в этих двух лабораториях и отобрать из него те случаи, когда в Дубне получался заданный импульс. После такого отбора все парижские измерения окажутся тоже с определенным импульсом. По существу, это просто подтверждение закона сохранения импульса. Могут быть и более сложные ситуации, но всегда влияние измерений в одной из подсистем на результаты измерений в другой нужно понимать именно в смысле отбора случаев, соответствующих определенному условию. Вероятность события при выполнении какого-либо условия называется "условной вероятностью".
Дополнительное условие заставляет нас отбирать другую последовательность событий. Естественно, что при этом вероятности изменяются, а следовательно, изменяется и волновая функция.
Какова вероятность автомобильной аварии, или, иными словами, какая доля автомобилей попадает в аварию? Ответ зависит от многих условий. Так, предсказание изменится скачком, если добавить: "в случае испорченных тормозов" или "с опытным водителем". Какова вероятность высказать неверное суждение в квантовой механике? Она резко увеличится, если добавить: "не подумав". Вот довольно распространенное утверждение: "как бы далеко ни разошлись две подсистемы, они остаются жестко связанными". Это и есть та физическая бессмыслица, против которой правильно возражали Эйнштейн, Подольский и Розен. А разгадка такова: подсистемы на большом расстоянии, разумеется, физически никак не связаны, они независимы. Но условная вероятность для одной из них, разумеется, зависит от того, какое состояние второй подсистемы мы отбираем. И явление это, как мы видим, не специально квантовое, а есть и в классической физике, и даже в повседневной жизни. Предсказание скачком изменяется при изменении условий отбора событий.
"Исправить можно, но будет хуже..." (из разговора с портным)
Нужно ли искать другую интерпретацию квантовой механики? Мне кажется, что главное - вероятностная природа предсказаний - сохранится при любых изменениях теории. Квантовая механика вместе с теорией измерений представляет собой логически замкнутую и необыкновенно красивую теорию. Все попытки ее "усовершенствовать" пока оказывались несостоятельными и в лучшем случае ограничивались вопросом: как менее красиво и более сложно получить уже известные результаты квантовой механики? Мы сейчас увидим, что единственная более или менее последовательная попытка "исправления" противоречит опыту.
В период бурных споров о полноте квантовомеханического описания возникла идея: не объясняется ли неопределенность в поведении электрона тем, что его состояние зависит не только от импульса, координаты и проекции спина, но еще от каких-то внутренних скрытых параметров? Неопределенность результата, как и в статистической физике, возникает от произвола в значении этих параметров. В принципе, если бы скрытые параметры можно было определить, предсказания сделались бы детерминированными (определенными), как в классической механике.
Поиски истины
Конечно, это очень неуклюжий и неприятный способ спасти детерминизм такой дорогой ценой - вводя лишние переменные. Тем более что поначалу удавалось только подтверждать уже известные квантовомеханические соотношения. Некоторое время казалось, что такой подход по своим следствиям неотличим от квантовой механики. Для единичного измерения игрой скрытых параметров удается получить совпадения с квантовой механикой. Однако при повторных измерениях это не всегда возможно.
Первое измерение так ограничивает область возможных значений скрытых параметров, что их свободы ко второму измерению уже недостаточно для согласия с квантовой механикой. Наиболее убедительно это показал Джон Белл в 1966 году. Для доказательства ему достаточно было предположить, что значения скрытых параметров в разделенных подсистемах независимы. Но ведь эти параметры только для того и вводились, чтобы избежать вероятностной "зависимости" разделенных объектов квантовой механики. Иначе говоря, утверждение Белла не вызывает сомнений.
Итак, было указано, при каких экспериментах можно увидеть различие между предсказаниями квантовой механики и теории скрытых переменных. Такой опыт был выполнен в 1972 году Стюартом Фридманом и Джоном Клаузером. Они наблюдали свет, испускаемый возбужденными атомами кальция. В условиях их эксперимента кальций испускал последовательно два кванта видимого света, которые можно было отличать с помощью обычного цветного фильтра. Каждый квант попадал в свой счетчик, проходя через поляриметр, который отбирал определенное направление поляризации. Изучалось число совпадений счетчиков как функция угла между направлениями поляризации двух квантов. Теория скрытых переменных предсказывает провалы на кривой, изображающей эту зависимость. На опыте не только не оказалось никаких провалов, но вся экспериментальная кривая с поразительной точностью совпала с теоретической кривой, полученной из квантовой механики.
Итак, никаких скрытых параметров нет. Квантовая механика лишний раз подтвердилась. Для микрообъектов нет лапласовского детерминизма.
Как ни удивительно, парапсихологи восприняли этот результат как возможное обоснование экстрасенсорных явлений. Но сначала признание: я впервые услышал о теореме Белла и об опытах Фридмана и Клаузера от американского парапсихолога. Большинство физиков, и я в том числе, были убеждены в справедливости квантовой механики и настолько не доверяли идее скрытых параметров, что перестали следить за событиями в этой области.
Неосторожная фраза "две подсистемы остаются жестко связанными после удаления на большое расстояние" оказалась не такой уж невинной. Если забыть о вероятностной природе волновой функции, то можно подумать, что связь между подсистемами - физическая, тогда как она не материальная, а информативная, в смысле условной вероятности, о чем недавно и шла речь. Физические же системы, жестко связанные на больших расстояниях,- прямой путь к объяснению многих чудесных явлений. Между тем опыт Фридмана и Клаузера только подтвердил квантовую механику, в которой нет никаких нарушений физических принципов,- соблюдается причинность: причина раньше следствия; нельзя осуществить физическое взаимодействие без того, чтобы какое-либо поле не распространилось от передающего объекта к принимающему, и скорость распространения этого поля меньше или равна скорости света.
Еще один физический факт, который некоторые парапсихологи пытаются использовать, в такой же мере не имеет отношения к экстрасенсорным явлениям. Из релятивистской квантовой механики следует - и это наблюдается на опыте, что наряду с частицами существуют античастицы: вместе с электроном - позитрон, с протоном - антипротон. Эти античастицы - такие же физические объекты, как и их более привычные партнеры, и, как и полагается, они движутся вперед по времени. Однако существует очень красивое, но не физическое, а математическое следствие их родства с частицами: античастицу можно рассматривать как частицу, движущуюся в сторону прошлого. Условность этого утверждения видна из того, что можно было бы с тем же успехом двигать вспять по времени частицы.
Если понимать этот математический факт как физическое явление, то может прийти в голову физическая нелепость: раз позитрон - это электрон, пришедший к нам из будущего, нельзя ли с его помощью узнать, что с нами будет? Нельзя ли научно обосновать удачные предсказания гадалок? Или, поскольку позитрон, родившийся рядом,- электрон, который пришел не только из будущего, но и издалека, нельзя ли увидеть удаленные предметы?
Должен разочаровать сторонников чудесного: релятивистская квантовая механика, так же как и нерелятивистская, не дает никаких научных оснований для экстрасенсорных явлений. Будущее и в этой теории вытекает из прошлого и определяется, в согласии с причинностью, событиями, которые происходили до предсказываемого момента. Видеть на расстоянии можно только с помощью чего-то, аналогичного телевизору; должен быть источник какого-либо излучения, которое передает информацию в приемник и распространяется со скоростью, не большей, чем скорость света.
В квантовой физике, так же как и в классической, пока не видно никаких фактов, которые помогли бы понять или обосновать экстрасенсорные явления. Если эти явления существуют, то их обоснование следует искать вне физики.