|
4. Свободные заряды и токи в природеЗаряженные частицы над нами и вокруг насЕстественное состояние тел на поверхности Земли - как атомов и молекул, так и больших кусков вещества - электрическая нейтральность. Однако если вы зарядите электроскоп, то через некоторое время он потеряет весь свой заряд, какой бы тщательной ни была изоляция. Значит, в воздухе вокруг нас немало заряженных частиц - ионов и пылинок. Шарик электроскопа "всасывает" в себя из атмосферы ионы противоположного знака и становится нейтральным. Высоко над нами простирается толстый слой сильно ионизированного газа - ионосфера. Она начинается в нескольких десятках километров от поверхности Земли и достигает четырехсот километров в высоту. Электроскопом ее не обнаружишь. Для открытия ионосферы понадобилось изобретение радио. Слой сильно ионизированного газа хорошо проводит электрический ток и подобно металлической поверхности отражает радиоволны с длиной волны, превышающей 30 метров. Не будь ионосферного "зеркала" вокруг Земли, радиосвязь на коротких волнах была бы возможна только в пределах прямой видимости. Три поставщикаИтак, ионы вокруг нас и над нами есть. Но ведь они недолговечны. Случайная встреча разноименных ионов, - и они перестают существовать. Значит, должны существовать какие-то непрерывно действующие процессы, поставляющие ионы. Таких поставщиков целых три. У поверхности Земли - это излучение радиоактивных элементов, содержащихся в земной коре в небольших количествах. На больших высотах - ультрафиолетовое излучение Солнца. И, наконец, всю толщу атмосферы сверху донизу пронизывают потоки очень быстрых заряженных частиц - космические лучи. Небольшая часть их идет от Солнца, а остальные - из глубин космического пространства нашей Галактики. Ионосфера Иногда с поверхности Солнца вырываются особенно мощные потоки заряженных частиц. На высоте нескольких сот километров над Землей их электромагнитные поля возбуждают атомы и заставляют излучать свет. Тогда мы видим северные (полярные) сияния. Разыгрываются они преимущественно на высоких широтах, и жителям умеренных поясов почти никогда не доводится наслаждаться изумительной красоты игрой световых столбов, переливающихся всеми цветами радуги. МолнияЗато всем знаком грозовой разряд. Чудовищное накопление в облаке электричества одного знака вызывает искру, длина которой иногда превышает десятки километров. Прихотливо изменяя свой путь в зависимости от проводимости воздуха и предметов, в которые она попадает, молния часто производит поразительные эффекты. Наиболее удивительные из них приведены в книге "Атмосфера" французского астронома Фламмариона. "Никакая театральная пьеса, никакие фокусы не могут соперничать, - пишет Фламмарион, - с молнией по неожиданности и странности ее эффектов. Она кажется каким-то особым веществом, чем-то средним между бессознательными силами природы и сознательной душою человека; это - какой-то дух, тонкий и причудливый, хитрый и тупой в то же время, ясновидящий или слепой, обладающий волей или подневольный, переходящий из одной крайности в другую, страшный и непонятный. С ним не сговоришься, его не поймаешь. Он действует и только. Действия его, без сомнения, так же, как и наши, только кажутся капризами, а на самом деле подчинены каким-то неизменным законам. Но до сих пор мы не могли уловить этих законов. Здесь он наповал убивает и сжигает человека, не только пощадив, но даже не коснувшись его одежды, которая остается нетронутой. Там он раздевает человека догола, не причинив ему ни малейшего вреда, ни одной царапины. В другом месте он ворует монеты, не повредив ни кошелька, ни кармана. То он срывает позолоту с люстры и переносит ее на штукатурку стен; то разувает путника и отбрасывает его обувь на десять метров в сторону, то, наконец, в одном селении пробуравливает в центре стопку тарелок и притом попеременно, через две штуки... Какой тут можно установить порядок". Далее перечисляется около сотни различных случаев. Например: "У одного очень волосатого человека, застигнутого грозой около Э., молния сбрила волосы полосами, вдоль всего тела, скатала их в клубочки и глубоко засунула в толщу икряных мышц". Или еще: "Летом 1865 года один врач из окрестностей Вены, доктор Дрендингер, возвращался домой с железной дороги. Выходя из экипажа, он хватился своего портмоне; оказалось, что его украли. Атмосфера Это портмоне было черепаховое, и на одной из его крышек находился инкрустированный стальной вензель доктора: два переплетенных между собой Д. Несколько времени спустя доктора позвали к иностранцу, "убитому" молнией и найденному без чувств под деревом. Первое, что доктор заметил на ляжке больного, был его собственный вензель, как бы только что сфотографированный. Можно судить об его удивлении! Больной был приведен в чувство и перенесен в госпиталь. Там доктор заявил, что в карманах больного где-нибудь должно находиться его черепаховое портмоне, что оказалось вполне справедливым. Субъект был тот самый вор, который стащил портмоне, а электричество заклеймило его, расплавив металлический вензель". Любопытно, что в приведенной Фламмарионом статистике число убитых женщин чуть ли не втрое меньше, чем мужчин. Это, конечно, объясняется не галантностью молнии, а просто тем, что в те времена (начало XX века) во Франции мужчины чаще бывали на полевых работах. Недавно в американских газетах сообщалось о случае, достойном Фламмариона. Молния ударила в холодильник и зажарила в нем курицу, которая затем была благополучно охлаждена, так как холодильник остался исправным. Можно, конечно, сомневаться в достоверности всех приведенных случаев, но нельзя не согласиться с тем, что молния действительно способна вытворять чудеса. Объяснить их не всегда оказывается возможным. Разряд длится всего лишь около стотысячной доли секунды, и к наблюдению его в таких исключительных случаях никакой подготовки не бывает. Повторить же потом событие заново невозможно: вы не создадите точно такую же молнию, не говоря уже о прочих условиях. Но в принципе не так уж все таинственно, как казалось Фламмариону. В конце концов все сводится к таким обычным действиям тока, как нагревание, электромагнитное поле и химические реакции. Только ток громадный: десятки, а то и сотни тысяч ампер. Главное не в том, чтобы разобраться в бесчисленных курьезах. Нужно понять, каким образом в грозовом облаке накопляется электрический заряд. Что вызывает электризацию водяных капель, и почему заряды противоположного знака пространственно разделены внутри облака? Здесь еще далеко не все ясно до конца. Прежде всего, нет единого механизма заряжения капель. Достоверно известно несколько таких механизмов, и трудно оценить, какой из них играет основную роль. Вот два из них. В электрическом поле Земли (мы уже упоминали, что земной шар заряжен отрицательно) капля воды поляризуется. На нижней ее части скопляется положительный заряд, а на верхней - отрицательный. Крупная капля при своем падении преимущественно захватывает отрицательные ионы воздуха и приобретает электрический заряд. Положительные ионы уносятся вверх восходящим потоком воздуха. Другой механизм - это заряжение капель при их дроблении встречными потоками воздуха. Мелкие брызги заряжаются отрицательно и уносятся вверх, а крупные, заряженные положительно, падают вниз. Оба эти механизма обеспечивают как заряжение капель, так и пространственное разделение зарядов противоположного знака внутри облака. Обычно в нижней части грозового облака накопляется отрицательный заряд (за исключением небольшой, положительно заряженной области), а в верхней - положительный. Гораздо хуже обстоит дело с объяснением шаровой молнии, которая иногда появляется после сильного разряда линейной молнии. Обычно это светящийся шар диаметром 10 - 20 сантиметров. Нередко она напоминает "котенка средней величины, свернувшегося клубочком и катящегося без помощи ног". Касаясь предметов, шаровая молния может взорваться, причиняя значительные разрушения. Шаровая молния, пожалуй, единственное макроскопическое явление на Земле, которое до сих пор не имеет сколько-нибудь достоверного объяснения. Разряд шарового типа не удается получить в лаборатории. В этом все дело. Огни святого ЭльмаПеред грозой или во время ее нередко на остриях и острых углах высоко поднятых предметов вспыхивают похожие на кисточки конусы света. Этот медленный и мирно совершающийся разряд называют с давних времен огнями святого Эльма. Еще у Тита Ливия можно прочесть, что когда флот Лизандра выходил из порта для того, чтобы напасть на афинян, на мачтах адмиральской галеры загорелись огни. Древние считали появление огней Эльма хорошим предзнаменованием. Особенно часто свидетелями этого явления становятся альпинисты. Иногда даже не только металлические предметы, но и кончики волос на голове украшаются маленькими светящимися плюмажами. Если поднять руку, то по характерному жжению чувствуется, как из пальцев истекает электрический ток. Нередко ледорубы начинают гудеть подобно большому шмелю. Эльма Огни святого Эльма не что иное, как форма коронного разряда, легко получаемого в лаборатории. Заряженное облако индуцирует на поверхности Земли под собой электрические заряды противоположного знака. Особенно большой заряд скапливается на остриях. Когда напряженность электрического поля достигнет критического значения 30 000 в/см, начинается разряд. Образовавшиеся возле острия вследствие обычной ионизации воздуха электроны ускоряются полем и, сталкиваясь с атомами и молекулами, разрушают их. Число электронов и ионов лавинообразно растет, и воздух начинает светиться. Электрический заряд ЗемлиГрозовое облако недолго хранит свой заряд. Несколько ударов молнии - и облако разряжается. Заряд земного шара, если не обращать внимание на незначительные колебания, остается неизменным. У поверхности Земли электрическое поле не так уж мало: 130 в/м. На первый взгляд это довольно странно. Из-за атмосферных ионов воздух проводит электрический ток, и расчеты показывают, что примерно за полчаса земной шар должен полностью разрядиться. Поэтому главная трудность не в выяснении происхождения заряда, а в том, чтобы понять, почему он не исчезает. Существуют две причины восстановления заряда Земли. Во-первых, удары молний. За сутки на Земле происходит более 40 тысяч гроз и ежесекундно около 1800 молний бьют в Землю. Нижняя часть облака несет отрицательный заряд и, следовательно, удар молнии - это передача земному шару некоторой порции отрицательного электричества. Одновременно во время грозы возникают токи с многочисленных остроконечных предметов (огни святого Эльма), которые отводят от земной поверхности положительный заряд. Баланс здесь навести трудно, но в общем, по- видимому, концы с концами сходятся. Потеря отрицательного заряда участками земной поверхности, над которыми простирается чистое небо, компенсируется притоком отрицательных зарядов в местах, где свирепствуют грозы. Ну, а откуда же взялся у Земли заряд, и почему он отрицательный? Здесь приходится строить догадки. По мысли Френкеля вначале небольшой заряд возник от случайных причин. Затем он начал расти за счет "грозового механизма", о котором шла речь, пока не установилось динамическое равновесие, существующее по сей день. Заряд вначале мог бы быть положительным. Тогда водяные капли грозового облака поляризовались бы по-иному, и молнии сообщали бы Земле положительный заряд. В общем все было бы так, как и сейчас, но только роли положительных и отрицательных зарядов переменились бы. Земной магнетизм
Магнитное поле Земли гораздо раньше привлекло к себе внимание людей, чем электрическое. Обнаруживается оно крайне просто, но его роль в жизни нашей планеты далеко не сводится к тому, чтобы помочь ее обитателям находить с помощью компаса верный путь в безбрежном океане, тайге или пустыне. Если электрическое поле практически не выходит за пределы нижних слоев атмосферы, то магнитное простирается на 20 - 25 земных радиусов. Лишь на высоте в 100 000 километров оно перестает играть заметную роль, приближаясь к величине поля межпланетного пространства. Магнитное поле образует третий "броневой пояс", окружающий Землю наряду с атмосферой и ионосферой. Око не подпускает к Земле потоки космических частиц, если только их энергия не слишком велика. Лишь в области магнитных полюсов эти частицы беспрепятственно могут вторгаться в атмосферу. Земной магнетизм На большой высоте магнитное поле невелико, но захватывает громадные области пространства. Действуя на заряженную частицу длительное время, оно значительно изменяет ее траекторию. Вместо прямой линии получается спираль, навивающаяся на силовые линии поля. Вдоль силовых линий магнитное поле гонит частицы к полюсам. Иногда, правда, если скорость частицы велика, она не успевает сделать даже одного витка, и тогда можно говорить лишь об искривлении траектории. На летящую вдоль силовой линии частицу в соответствии с законом Ампера магнитное поле не действует. Вот почему частицы свободно могут подлетать к полюсам, откуда веером расходятся силовые линии. Не удивительно, что корпускулярные потоки от Солнца вызывают свечение верхних слоев воздушного океана преимущественно у полюсов. Кстати, эти потоки частиц сами создают значительные магнитные поля и вызывают "магнитные бури", во время которых стрелка компаса начинает беспомощно метаться. Радиационные пояса Земли, открытые сравнительно недавно с помощью космических ракет, - это не что иное, как заряженные частицы не слишком больших энергий, захваченные магнитной ловушкой, расставленной нашей планетой. Именно магнитное поле удерживает на большой высоте рои заряженных частиц, подобно ореолам окружающим Землю. Во внешнем поясе доминируют электроны, а во внутреннем, где напряженность поля больше, - протоны. Для полетов космонавтов на больших высотах эти пояса представляют реальную опасность. Земной шар - сферическая динамомашинаПроисхождение земного магнетизма - еще более запутанный вопрос, чем происхождение электрического поля. Его нельзя объяснить скоплением намагниченных пород. Интересная идея Френкеля, выдвинутая сравнительно недавно, позволяет, по-видимому, здесь кое-что понять. Земное ядро - это генератор электрического тока, действующий по принципу самовозбуждения, как и обычная динамомашина. Вам, вероятно, нетрудно будет вспомнить, в чем состоит этот принцип. В динамомашинах ток возникает при движении проводников в магнитном поле, которое само создается этим же током. Если вначале тока нет, то при некоторой скорости вращения он возникает и начнет нарастать. Ведь небольшое остаточное поле всегда есть. Оно создает ток, несколько увеличивающий магнитное поле. За счет этого возрастает ток, а затем и магнитное поле, и т. д., вплоть до некоторого предельного значения. Чтобы можно было уподобить земной шар генератору, прежде всего надо допустить, что ядро Земли является жидким и способно проводить электрический ток. В этих предположениях нет ничего невероятного. Но откуда могут взяться движения проводящих масс ядра? У динамомашины мы просто раскручиваем якорь, а здесь нет никаких внешних воздействий. Выход, однако, может быть найден. За счет радиоактивного распада неустойчивых элементов температура в центре ядра должна быть несколько выше, чем на его периферии. Из-за этого возникает конвекция: более горячие массы из центра ядра устремляются вверх, а холодные опускаются вниз. Но Земля вращается и скорость масс на поверхности ядра больше, чем в его глубинах. Поэтому поднимающиеся элементы жидкости тормозят вращение наружных слоев ядра, а опускающиеся, напротив, ускоряют внутренние слои. В результате внутренняя часть ядра вращается быстрее наружной и играет роль ротора генератора, в то время как наружная - роль статора. В такой системе, как показывают расчеты, возможно самовозбуждение и появление вихревых электрических токов значительной величины. Эти токи, согласно гипотезе Френкеля, создают магнитное поле вокруг Земли! Энергия на поддержание тока черпается из радиоактивного разогрева вещества, создающего конвекционные токи в ядре. Так ли обстоит дело в действительности, сказать трудно. Во всяком случае правильнее называть Землю "большой динамомашиной", чем "большим магнитом", как это делается во многих книгах. Магнитное поле окружает не только Землю, но может существовать и у других планет и звезд. Оно ставит "свой штамп" на световые волны, излученные атомами Солнца и звезд, давая тем самым физикам возможность обнаружить себя. Луна, как показали измерения наших и американских ученых, не имеет магнитного поля. Не имеет его и Венера. Марс, возможно, и обладает магнитным полем, но оно очень мало, по крайней мере в 1000 раз слабее земного. Это было установлено с помощью наших космических орбитальных станций "Марс 2" и "Марс 3". Космическая электродинамикаЗаговорив о магнитных полях планет и звезд, мы незаметно вступили в новую область, область космической электродинамики. Здесь пока еще мало достоверного; гораздо меньше, чем различных гипотез. Но многое, что вчера еще было любопытной догадкой, сегодня становится почти достоверным фактом. Главное, выяснилось, что электромагнитные силы играют в космосе совсем не малую роль, как это предполагалось ранее. Бушующая поверхность и атмосфера Солнца... Гигантские языки раскаленного вещества взмывают вверх. Вихри и смерчи размером с нашу планету. Бури, непрерывные бури, но огненные, сверкающие. Бури не только вещества, но и магнитного поля. Иногда из глубин Солнца парами выплывают черные пятна. Магнитное поле в этих участках возрастает в тысячи раз. Огромные силы порой выбрасывают из Солнца целые сгустки заряженных частиц. Преодолевая гравитационное притяжение, они со скоростью нескольких тысяч километров в секунду врезаются в атмосферу Земли. Трудно здесь физику усмотреть какую-то закономерность, какой-то порядок. Трудно понять природу сил в крутящейся массе материи. Это происходит далеко, очень далеко, и совсем не похоже на то, что мы можем видеть на нашей планете. Трудно, но не невозможно. При тех температурах, которые есть на Солнце, не может быть ни нейтральных атомов, ни нейтральных молекул. Они просто не могут уцелеть, как не может уцелеть паровоз, на полном ходу врезающийся во встречный поезд. А такой полностью ионизированный газ, или полностью ионизированная плазма, как говорят физики, превосходно проводит электрический ток. Это дает возможность электромагнитным силам развернуться и демонстрировать свою мощь на новом поприще. В магнитном поле внутри движущейся высокотемпературной плазмы возбуждаются электрические токи немалой величины. Из-за хорошей проводимости они не склонны затухать. Поэтому в среде наряду с обычными силами упругости приобретают не меньшее значение силы магнитного взаимодействия токов. И если движение простой среды описывается законами гидродинамики, то здесь царствует магнитная гидродинамика. Мы еще, конечно, очень далеки от того, чтобы понять все, происходящее на Солнце. Но есть уверенность, что основные явления, начиная от выброса целых масс материи и кончая появлением солнечных пятен, обязаны магнитным взаимодействиям. Да и не только это! Межзвездный газ сильно ионизирован излучением. Плотность его мала (1 частица на кубический сантиметр), но это компенсируется громадными размерами облаков. С электрическими токами и, соответственно, магнитными полями в них нельзя не считаться. Движущиеся облака заполняют собой всю Галактику, и поэтому вся она оказывается наполненной магнитным полем. И даже не только сама Галактика, но и соседние области пространства. Магнитные поля здесь не велики, и мы их непосредственно воспринимать не можем. Но мы знаем, что они есть! Откуда же? Радиоизлучение Галактики и космические лучиЕсли бы мы могли видеть радиоволны, то на небе сверкало бы не одно, а целых три Солнца (точнее, "радиосолнца"). Одно из них в созвездии Кассиопеи, другое - в Лебеде и, наконец, это наше обычное Солнце*. Но кроме того мы заметили бы множество менее ярких "радиосолнц" и слабый рассеянный "радиосвет", идущий к нам из всех уголков Галактики и даже из прилегающих к ней, казалось бы, пустых мест. *(Солнце - рядовая звезда и только близость его к нам позволяет ему конкурировать по "радиояркости" с двумя первыми источниками, неизмеримо более мощными, чем Солнце.) Часть радиоволн возникает при столкновениях заряженных частиц раскаленного газа. Это тепловое (тормозное) излучение. Оно ничего не может рассказать нам о магнитных полях Галактики. Но есть другая, нетепловая часть, колыбелью которой служит магнитное поле. Оно заворачивает быстрые космические электроны, и, крутясь по спирали, эти электроны излучают электромагнитные волны, подобно тому как бешено вращающийся точильный камень рассыпает вокруг себя искры, если коснуться его поверхности лезвием ножа. Можно утверждать, что там, где рождаются радиоволны, обязательно есть магнитные поля! Но откуда берутся в космосе быстрые электроны? Радиоизлучение рождено ими, и там, где находятся особо мощные источники радиоволн, мы должны искать космические ускорители. Значит, те далекие мощные "радиосолнца", о которых шла речь, и являются главным образом такими космическими ускорителями. Мы привыкли к спокойной глубине чистого ночного неба. Ничто не кажется столь незыблемым, вечным, как "стройный хор" небесных светил. В общем-то так оно и есть. Но иногда происходят катастрофы; катастрофы чисто космических масштабов. Звезда, жившая миллиарды лет своей обычной жизнью, вдруг начинает по неизвестным причинам чудовищно распухать. (Если бы это случилось с нашим Солнцем*, то очень скоро орбиты всех планет оказались бы внутри него.) Яркость звезды (ее называют сверхновой) увеличивается в сотни миллионов раз, и ее можно видеть на небе среди бела дня. Постепенно блеск уменьшается, и на месте звезды остается туманное облако, иногда с трудом различимое в телескоп. *(Солнцу подобный взрыв в действительности не угрожает. Его масса слишком мала.) Мы надеемся, что все более или менее представляют себе, что такое напряжение в электрической сети. Здесь слово напряжение имеет точно такой же смысл. В Галактике с ее миллиардами звезд такая вспышка наблюдается раз в 100 - 200 лет. С тех пор как изобрели телескоп, не появилось ни одной сверхновой. Так вот, "радиосолнца" в большинстве своем это остатки сверхновых звезд. Лишь в направлении созвездия Лебедя мы, вероятно, наблюдаем следы еще более мощной катастрофы; взрыв целой галактики, подобной нашей. Можно себе представить, что первоначальное ускорение заряженные частицы (электроны, протоны и ядра атомов) получают от гигантской ударной волны, сопровождающей взрыв сверхновой. В дальнейшем начинают действовать электромагнитные силы. Нарастающие магнитные поля индуцируют электрическое поле. Это поле может быть не таким уж большим, но из-за своих космических размеров ускоряет отдельные частицы до энергий, недоступных пока для ускорителей, созданных руками человека. Некоторую долю космических лучей поставляют менее мощные индукционные электрические поля Солнца и других звезд. Существует, вероятно, еще один механизм ускорения космических частиц. При встрече движущегося намагниченного облака межзвездного газа с быстрой частицей происходит процесс, аналогичный соударению двух шаров. Только роль обычных упругих сил играет взаимодействие частицы с индукционным электрическим полем, порожденным движущимся вместе с газом магнитным полем. При таком столкновении энергия частицы должна возрастать, подобно тому, как это происходит при столкновении легкого шара с очень тяжелым. После большого числа столкновений частица может набрать значительную энергию. Беспорядочные магнитные поля Галактики не только ускоряют, но и рассеивают космические частицы. В результате на Землю они уже поступают равномерно со всех сторон, а не только из тех мест, где происходит их ускорение. Сверхмощные частицы залетают к нам, вероятно, из соседних галактик. Мы не можем утверждать, что все в мире происходит так и только так, как мы вам только что рассказали. Это лишь наиболее естественная с современной точки зрения картина электромагнитных явлений во Вселенной. Написана она, можно заметить, весьма крупными мазками. И это получилось не только за счет того, что картина очень велика. Детали явлений остаются пока неясными для самих художников-ученых. Да и "краска" на картине еще "не просохла": картина была создана совсем недавно, несколько лет назад, и лишь ее цельность вселяет надежду, что в основе своей она правильна. Беседа соавторовВ то время как в космосе разыгрывались приличествующие ему величественные явления, в одной из московских квартир "маленький дружный коллектив" (так именовали себя авторы) раздирали противоречия. К моменту, когда работа над книгой уже шла полным ходом, авторам стало ясно, что их позиции, мягко говоря, не вполне совпадают. Беседа соавторов Сущность спора, как ясно из дальнейшего, позволяет закрепить за одним из соавторов имя Кроткого (сокращенно К), а за другим - Строптивого (сокращенно С). К. Ты знаешь, как я тебя уважаю! Но что ты делаешь? Вместо непринужденного рассказа о сущности сил, ты, превратившись в архивариуса, скрупулезно, с ненужными деталями регистрируешь все проявления электромагнитных сил, которые знаешь. Да еще выискиваешь в книгах описания проявлений сил, которых, извини меня, совсем не знаешь. Об этом ли мечтал наш читатель, приобретая книгу? Что ты думаешь, ему нужен еще один учебник? С. Прости меня, но поскольку книга не одобрена Министерством, это еще не учебник. И, кроме того, разве мы не обещали рассказать о силах в природе? Значит о силах, которые окружают каждого из нас. Нельзя, никак нельзя обойти трение, упругость, химические силы и т. д. Ведь мы пишем не для юных философов, желающих знать только основы основ и не интересующихся тем, что происходит вокруг нас, над нами и под нами каждый день. К. Я верю, что у тебя прекрасные намерения. Но ведь если идти по твоему пути, то придется, например, говорить не только о трении в жидкостях вообще, но и о трении шарика, цилиндрика, кубика и т. д. Тогда все будет разложено по полочкам. Я, конечно, немного преувеличиваю, но стремление к раскладыванию по полочкам у тебя, несомненно, есть. С. Что же ты предлагаешь, поступить согласно старому анекдоту, в котором выучившийся сынок поражал родителей и всех окружающих крайним научным лаконизмом ответов? На все вопросы: что, как и почему, он бросал кратко - это электричество. И нам что ли писать: упругость - это электричество; трение - тоже электричество; химические силы есть силы электрические и т. д. К. А посмотри, что получилось у тебя. Здесь и строение газов вместе с жидкостями (которое известно всем), и особенности сил в кристаллах (которые мало кому известны, но зато не интересны почти никому)... Хочешь все же о них написать - пиши. Но пиши так, чтобы читатель не заснул или не забросил книгу куда-нибудь подальше. С. Да пойми же ты, что это трудно, очень трудно. Интереснее и проще писать, например, о теории относительности, чем о химических силах. Да кроме того, о каждом типе электромагнитных сил надо писать целую книгу. Желая быть кратким, трудно не быть скучным. К. Интереснее не только писать о теории относительности, о ней интереснее и читать. Мне больно думать, что мой соавтор сознательно идет на то, чтобы быть скучным. Зачем? Существуют в конце концов энциклопедии, где каждый может прочесть все, что ему угодно. С. Ну что же, пусть эта часть книги и будет энциклопедией, но энциклопедией, все же (льщу себя надеждой) более приспособленной для не слишком изнурительного чтения. К. Я вижу, ты упорствуешь. А ведь в твоем рассказе, кроме всего прочего, нет даже элементарной последовательности. После космических лучей ты сразу же хочешь перейти к электрическим рыбам. С. Ну и что? Рыбы, так рыбы. Кто ими не интересуется, может не читать. И вообще, почему бы нам не написать в предисловии, что каждый читатель может выбрать из разделов главы "Электромагнитные силы в действии" лишь те, которые его интересуют. На худой конец пусть не читает эту главу совсем. К. Гм... поскольку ты так упрям, это, по-видимому, действительно единственный выход. С. Ты не огорчайся особенно. Есть ведь еще редактор. Скажет: все это выбросить - выбросим. На том и порешили*. *(Авторам повезло: им достался строгий, но покладистый редактор. Не верите? Читайте дальше! (Прим. ред.)) Электрические рыбыИтак, электрические рыбы. Это уникальные существа, отличающиеся от своих собратьев тем, что несут на себе живые гальванические элементы. Вырабатываемый ими электрический ток служит средством защиты или нападения. Интересно, что среди ископаемых рыб электрических было гораздо больше, чем среди здравствующих ныне. Видимо, явное использование электромагнитных сил оказалось не столь эффективным, как совершенствование сил, проявляющихся неявно: в первую очередь мышечных. Скат Наиболее ярким представителем интересующей нас породы является электрический скат. Рыба эта, обитающая в теплых морях, весит около 100 килограммов и достигает около двух метров в длину. Его электрические органы, расположенные по бокам головы, весят больше пуда. Неутомленный скат способен дать ток в 8 ампер при напряжении в 300 вольт. Это представляет серьезную опасность для человека. От электрических рыб трудно ожидать большой чувствительности к току. И действительно, скат легко переносит напряжения, смертельные для других рыб. Электрические органы ската по своему строению до удивления походят на батарею гальванических элементов. Они состоят из многочисленных пластинок, собранных столбиками (последовательное соединение элементов), которые расположены друг возле друга во много рядов (параллельное соединение). Одна сторона пластинки гладкая и несет на себе отрицательный заряд. Другая, с выступающими сосочками, заряжена положительно. Как и полагается, все устройство заключено в электроизолирующую ткань. Мы не будем пытаться вникнуть в механизм возникновения электродвижущей силы в органах ската, как не разбирали в свое время принцип действия обычного гальванического элемента (последуем совету К). Здесь еще много неясного. С уверенностью можно утверждать лишь одно: в основе работы электрических органов лежат химические силы, как и в гальваническом элементе. Не будем мы также расширять круг знакомств среди электрических рыб. Нельзя только не упомянуть еще об одном замечательном обитателе Нила - мормирусе или водяном слонике. Эта рыба снабжена удивительным локатором. В основании хвоста у нее расположен генератор переменного электрического тока, посылающий импульсы с частотой нескольких сот колебаний в секунду. Окружающие предметы искажают электромагнитное поле вокруг мормируса, что немедленно отмечается приемным устройством на его спине. Чувствительность локатора необычайно велика. Мормируса нельзя поймать в сеть. В аквариуме он начинает метаться, как только вы проведете несколько раз расческой по волосам. Как работает локатор, пока не выяснено. Есть надежда, что детальное исследование этого вопроса поможет наладить подводную электромагнитную связь, что пока не удается из-за большого затухания электромагнитных волн в воде. Природа нервного импульсаВ конце концов скат и подобные ему рыбы со всем своим электрическим хозяйством - не более чем каприз природы. Свободному электричеству в живых организмах природа отвела несравненно более значительную роль. Это электричество обслуживает линии связи, передающие в мозг "телеграммы" от органов чувств обо всем, совершающемся во внешнем мире, и ответные приказания мозга любым мышцам и всем внутренним органам. Нервы пронизывают все тело более или менее совершенных живых существ, и благодаря им организм выступает как единое целое, действующее подчас поразительно целесообразно. Стоит перерезать нерв, ведущий к какой-либо мышце, и она становится парализованной, подобно тому как перестает работать цилиндр мотора, если порвать провод, передающий импульсы тока запальной свече. Это не просто внешняя аналогия. Еще со времен Гальвани было установлено, что передаваемый нервным волокнам сигнал (нервный импульс) представляет собой кратковременный электрический импульс. Правда, дело обстоит далеко не так просто, как молено подумать. Нерв не пассивный канал большой проводимости, как обыкновенная металлическая проволока. Скорее он напоминает то, что в технике называют релейной линией, когда поступающий сигнал передается только соседним участкам линии, где он усиливается и лишь затем скользит дальше, там снова усиливается и т. д. Благодаря этому сигнал может быть передан без ослабления на значительные расстояния, несмотря на естественное затухание. Нервный импульс Что же такое нерв? У Р. Джерарда можно прочесть: "Если паука, которого мы видим с земли висящим на паутинной нити на высоте шестиэтажного здания, уменьшить в размерах еще примерно раз в двадцать (включая нить, на которой он висит), он очень напоминал бы нервную клетку, или нейрон. Тело нервной клетки не отличается от других клеток ни своими размерами, ни какими-либо другими особенностями... Однако нейрон, в отличие от обычных, нелюбопытных клеток, имеет не только клеточное тело - он рассылает для исследования отдаленных частей организма тонкие нитеподобные отростки. Большинство отростков распространяется на небольшие расстояния... Однако один тонкий отросток диаметром менее 0,01 миллиметра, точно одержимый страстью к странствованиям, отходит от нейрона на громадные расстояния, измеряемые сантиметрами и даже метрами. Все нейроны центральной нервной системы собраны вместе в головном и спинном мозгу, где они образуют серое вещество... И только длинные отростки - аксоны соединяют их с остальными частями тела. Пучки этих аксонов, или осевых отростков, отходящих от близких друг к другу нервных клеток, образуют нервы". Особое вещество - миэлин окутывает тонким слоем большинство аксонов, подобно тому как изоляционная лента обматывает электрический провод. Сам аксон можно упрощенно представить себе как длинную цилиндрическую трубку с поверхностной мембраной, разделяющей два водных раствора разного химического состава и разной концентрации. Мембрана подобна стенке с большим количеством полуоткрытых дверей, сквозь которые ионы растворов могут протискиваться только с большим трудом. Самое удивительное и непонятное в том, что электрическое поле "притворяет эти дверцы", а с его ослаблением они открываются шире. В состоянии бездействия внутри аксона находится избыток ионов калия; снаружи - ионов натрия. Отрицательные ионы сконцентрированы главным образом на внутренней поверхности мембраны и поэтому она заряжена отрицательно, а наружная поверхность - положительно. Потенциал При раздражении нерва происходит частичная деполяризация мембраны (уменьшение зарядов на ее поверхностях), что ведет к снижению электрического поля внутри нее. Вследствие этого "приоткрываются дверцы" для ионов натрия и они начинают проникать внутрь волокна. В конце концов внутренняя часть аксона заряжается на этом участке положительно. Так возникает нервный импульс. Собственно говоря, это импульс напряжения*, вызванный протеканием тока через мембрану. *(Мы надеемся, что все более или менее представляют себе, что такое напряжение в электрической сети. Здесь слово напряжение имеет точно такой же смысл.) В этот момент "приоткрываются дверцы" для калиевых ионов. Проходя на поверхность аксона, они постепенно восстанавливают то напряжение (около 0,05 вольта), которое было у невозбужденного нерва. Одновременно часть ионов с соседнего участка "прорывается сквозь дверцы соседей". Из-за этого поле здесь также начинает ослабевать, и весь процесс повторяется на новом участке аксона. В результате по нерву человека к мозгу, не затухая, со скоростью около 120 метров в секунду движется нервный импульс. Импульс глаз Ионы натрия и калия, смещенные при прохождении импульса со своих насиженных мест, постепенно возвращаются обратно непосредственно сквозь стенку за счет химических процессов, механизм которых пока еще не выяснен. Вызывает восхищенное удивление, что все поведение высших животных, все творческие усилия человеческого мозга основаны в конечном счете на этих чрезвычайно слабых токах и тончайших, микроскопических химических реакциях. Биотоки мозгаЗдесь мы касаемся святая-святых живой природы - человеческого мозга. В мозгу непрерывно совершаются электрические процессы. Если на лоб и затылок наложить металлические пластины, соединенные через усилитель с регистрирующим прибором, то можно зафиксировать непрерывные электрические колебания коры головного мозга*. Их ритм, форма и интенсивность существенно зависят от состояния человека. *(Колебания наблюдаются не только в мозгу человека, но и в мозгу животных.) В мозгу сидящего спокойно с закрытыми глазами, не думающего ни о чем человека совершается около 10 колебаний в секунду. Когда человек открывает глаза, мозговые волны исчезают и вновь появляются, когда глаза закрыты. Когда человек засыпает, ритм колебаний замедляется. По характеру колебаний можно очень точно определить момент начала и конца сновидения. При заболеваниях мозга характер электрических колебаний меняется особенно резко. Так, патологические колебания при эпилепсии могут служить верным признаком заболевания. Все это доказывает, что мозговые клетки находятся в состоянии постоянной активности, и большие количества их, по выражению Джерарда, "колеблются вместе, подобно скрипкам огромного оркестра". Поступающие в мозг нервные импульсы не идут проторенными путями, а меняют всю картину распределения колебаний в коре больших полушарий. Характер электрической активности мозга меняется с возрастом в течение всей жизни и обучения. Надо полагать, что электрические колебания не просто сопутствуют работе мозга, как шум - движению автомобиля, а являются существеннейшим моментом всей его жизнедеятельности. У электронной вычислительной машины, способной выполнять отдельные функции мозга даже лучше, чем он сам, именно электромагнитные процессы определяют всю работу. Нужно подчеркнуть, что каждому ощущению, каждой мысли отнюдь не соответствует свое собственное, определенное колебание. О чем думает человек, по форме электрических колебаний мы пока определять не умеем. Какие функции выполняют эти процессы в мозгу, мы пока не знаем. Но они отчетливо показывают, что материальной основой мышления являются электромагнитные процессы в наиболее высокоорганизованной материи, которую создала природа на нашей планете. Самовсасывающие дренажные насосы. Насос самовсасывающий jex150. |
|
|