В отличие от многих, распространенных в то время спекуляций о строении атома модель Томсона базировалась на физических фактах, которые не только оправдывали модель, но и давали определенные указания на число корпускул в атоме. Первым таким фактом является рассеяние рентгеновских лучей, или, как говорил Томсон, возникновение вторичных рентгеновских лучей. Томсон рассматривает рентгеновское излучение как электромагнитные пульсации. Когда такие пульсации падают на атомы, содержащие электроны, то электроны, приходя в ускоренное движение, излучают как это и описывает формула Лармора. Количество энергии, излучаемое в единицу времени электронами, находящимися в единице объема, будет
где N - число электронов (корпускул) в единице объема. С другой стороны, ускорение электрона
где Ер - напряженность поля первичного излучения. Следовательно,, интенсивность рассеянного излучения
Так как интенсивность падающего излучения согласно теореме Пойнтинга равна
то отношение рассеянной энергии к первичной
Эта формула и была опубликована Томсоном во втором издании его книги "Conduction of Electricity through Gases", вышедшем в 1906 г. Вывод Томсона был подтвержден опытами Ч. Г. Баркла.
Чарлз Гловер Баркла, получивший в 1917 г. Нобелевскую премию за открытие характеристических рентгеновских лучей, был в 1899-1902 гг. "студентом-исследователем" (аспирантом) у Томсона в Кембридже, и здесь он заинтересовался рентгеновскими лучами. В 1902 г. он был преподавателем университетского колледжа в Ливерпуле, и здесь в 1904 г. он, исследуя вторичное рентгеновское излучение, обнаружил его поляризацию, которая вполне совпадала с теоретическими предсказаниями Томсона. В окончательном опыте 1906 г. Баркла заставлял первичный пучок рассеиваться атомами углерода. Рассеянный пучок падал перпендикулярно первичному пучку и здесь вновь рассеивался углеродом. Этот третичный пучок был полностью поляризован.
Изучая рассеяние рентгеновских лучей от легких атомов, Баркла в 1904 г. нашел, что характер вторичных лучей таков же, как и первичных. Для отношения интенсивности вторичного излучения к первичному он нашел величину, не зависящую от первичного излучения, пропорциональную плотности вещества:
Из формулы Томсона
следует
Но плотность = nA/L, где А - атомный вес атома, n - число атомов в 1 см3, L - число Авогадро. Следовательно,
Если положить число корпускул в атоме равным Z, то N = nZ и
где
Если подставить к правой части этого выражения значения e, m, L, то найдем К. В 1906 г., когда числа e и m не были точно известны, Томсон нашел из измерений Баркла для воздуха, что Z = A, т. е. число корпускул в атоме равно атомному весу. Значение K, полученное для легких атомов Баркла еще в 1904 г., было K = 0,2. Но в 1911 г. Баркла, воспользовавшись уточненными данными Бухерера для e/m, значениями e и L, полученными Резерфордом и Гейгером, получил K = 0,4, и следовательно, Z = 1/2. Как оказалось несколько позже, это соотношение хорошо выполняется в области легких ядер (за исключением водорода).
Теория Томсона помогла разобраться в ряде вопросов, но еще большее число вопросов оставляла нерешенными. Решительный удар этой модели был нанесен опытами Резерфорда 1911 г., о которых будет сказано дальше.
Сходную кольцевую модель атома предложил в 1903 г. японский физик Нагаока. Он предположил, что в центре атома находится положительный заряд, вокруг которого обращаются кольца электронов наподобие колец Сатурна. Ему удалось вычислить периоды колебаний, совершаемые электронами при незначительных смещениях на своих орбитах. Частоты, полученные таким образом, более или менее приближенно описывали спектральные линии некоторых элементов*.
* (Следует отметить также, что планетарная модель атома были предложена в 1901 г. Ж. Перреном. Об этой своей попытке он упоминал в Нобелевской лекции, прочитанной 11 декабря 1926 г.)
25 сентября 1905 г. на 77-м съезде немецких естествоиспытателей и врачей с докладом об электронах выступил В. Вин. В этом докладе он, между прочим, говорил следующее: "Большую трудность представляет для электронной теории также объяснение спектральных линий. Так как каждому элементу соответствует определенная группировка спектральных линий, которые он испускает, находясь в состоянии свечения, то каждый атом должен представлять неизменную систему. Проще всего было бы представлять атом как планетарную систему, состоящую из положительно заряженного центра, вокруг которого обращаются, подобно планетам, отрицательные электроны. Но такая система не может быть неизменной вследствие излучаемой электронами энергии. Поэтому мы вынуждены обратиться к системе, в которой электроны находятся в относительном покое или обладают ничтожными скоростями - представление, в котором содержится много сомнительного".
Сомнения эти еще более увеличивались по мере открытия новых загадочных свойств излучения и атомов.