Ночью, чтобы не мешать уличному движению, я протягиваю веревку из своего окна к далекому киоску. Тщательно измеряю расстояние S. Столь же точно измеряю длины a, b и с. Возвожу их в квадрат, складываю, сравниваю. Вышло подтверждение формулы S2 = а2 + b2 + с2 - значит, в пространстве можно провести плоскости и прямые, значит, пространство плоское, евклидово.
Или так. Еду на Кавказ. Стягиваю тугими канатами три горные вершины. Измеряю в этом треугольнике углы, складываю их. Получилось в сумме два прямых - есть еще одно доказательство того, что пространство плоское.
Ну, а если эти эксперименты приведут к другим результатам? Если S2 не совпадет с а2 + b2 + с2? И сумма углов кавказского треугольника не даст двух прямых? Очень нелегко, очень непривычно допустить подобное. Разум упрямо противится даже мысленно позволить столь странный итог пространственных измерений.
Однако вопреки протестам интуиции заставим себя вообразить, что расхождения все-таки обнаружились. Что это может значить?
Когда подобное случалось на поверхности, вывод был очевиден: поверхность имеет кривизну. А когда нарушения традиционной теоремы Пифагора объявятся в пустоте, резонно будет сказать, что это доказывает кривизну пространства. Прежде, будучи блином, я с помощью метрических теорем определял, какова моя поверхность, не сходя с нее. Теперь, став объемным геометром, я хочу совершенно аналогичным способом узнать, каково пространство: насколько и как оно искривлено. И снова - не выходя из него!
На сфере или седле я не мог построить плоскость и провести идеальную прямую линию. Вместо нее у меня выходили геодезические линии - прямейшие, но не прямые. Именно по ним шли кратчайшие расстояния между точками Подобно этому, в кривом пространстве я не смогу построить ни идеальной прямой, ни идеальной плоскости. Вместо плоскостей проведутся поверхности минимальной кривизны, а вместо прямых опять появятся геодезические линии - прямейшие, но не прямые. Однако изнутри, из пространства, непосредственно увидеть искривление ею невозможно, потому что тамошние жители сделают кривыми все свои линейки и другие эталоны прямизны - подгонят их к располагающимся по геодезическим линиям световым лучам, натянутым нитям, путям инерционного полета тел, не подверженных действию сил, и т. д. Поверхности минимальной кривизны будут выглядеть плоскостями. Только исследования параллельных линий да метрические эксперименты помогут определить эту странную, почти невообразимую кривизну пустоты.
Трудновато? Да, нелегко.
Геометрическая возможность неевклидового пространства была неожиданным откровением науки XIX века.
Это открытие, сделанное в 1825 году, принадлежит гениальному русскому математику Николаю Ивановичу Лобачевскому.