Новости    Библиотека    Энциклопедия    Биографии    Ссылки    Карта сайта    О сайте


предыдущая главасодержаниеследующая глава

Скорости молекул

Теория указывает, что при одной температуре средние кинетические энергии молекул mv2ср/2 одинаковы. При нашем определении температуры эта средняя кинетическая энергия поступательного движения молекул газа пропорциональна абсолютной температуре. Комбинируя уравнение идеального газа и уравнение Бернулли, найдем


Измерение температуры термометром, заполненным идеальным газом, придает этой мере простой смысл: температура пропорциональна среднему значению энергии поступательного движения молекул. Поскольку мы живем в трехмерном пространстве, про точку, движущуюся как угодно, можно сказать: она имеет три степени свободы. Значит, на одну степень свободы движущейся частицы приходится кТ/2 энергии.

Определим среднюю скорость молекул кислорода при комнатной температуре, которую мы для круглого счета примем в 27°С=300 К. Масса одной молекулы кислорода равна 32/(6*1023). Простое вычисление даст мср = 4,8*104 см/с, т.е. около 500 м/с. Существенно быстрее движутся молекулы водорода. Их массы в 16 раз меньше и скорости в больше, т. е. при комнатной температуре составляют около 2 км/с. Прикинем, с какой тепловой скоростью движется маленькая? видимая в микроскоп частичка. Обычный микроскоп позволяет увидеть пылинку диаметром в 1 мкм (10-4 см). Масса такой частицы при плотности,; близкой к единице, будет что-нибудь около 5*10-13 г. Для ее скорости получим около 0,5 см/с. Неудивительно, что такое движение вполне заметно.

Скорость броуновского движения горошины с массой в 0,1 г будет уже всего только 10-6 см/с. Немудрено, что мы не видим броуновского движения таких частиц.

Мы говорим о средних скоростях молекулы. Но ведь не все молекулы движутся с одинаковыми скоростями, какая-то доля молекул движется быстрее* а какая-то медленнее. Все это, оказывается можно рассчитать. Приведем только результаты.

При температуре около 15°С, например, средняя скорость молекул азота равна 500 м/с, со скоростями от 300 до 700 м/с движется 59% молекул. С малыми скоростями - от 0 до 100 м/с - движется всего лишь 0,6% молекул. Быстрых молекул со скоростями свыше 1000 м/с в газе всего лишь 5,4% (см. рис. 3.2).

Рис. 3.2
Рис. 3.2

Основание каждого столбика рисунка построено на интервале скоростей, о котором идет речь, а площадь пропорциональна доле молекул, скорости которых лежат в этом интервале.

Можно рассчитать и распределение молекул по разным значениям энергии поступательного движения-

Число молекул энергия которых более чем в два раза превосходит среднюю, уже меньше 10%. Доля еще более "энергичных" молекул тает по мере увеличения энергии во все возрастающей степени. Так, молекул, энергия которых в 4 раза больше средней,- всего 0,7%, в 8 раз больше средней - 0,06*10-4%, в 16 раз больше средней - 2*10-8%.

Энергия молекулы кислорода, движущейся со скоростью 11 км/с, равна 23*10-12 эрг. Средняя энергия молекулы при комнатной температуре равна всего 6*10-14 эрг. Таким образом, энергия "одиннадцати-километрозой молекулы" по крайней мере в 500 раз больше энергии молекулы со средней скоростью. Неудивительно, что доля молекул со скоростями выше 11 км/с равна невообразимо малому числу - порядка 10-300.

Но почему нас заинтересовала скорость 11 км/с? В книге 1 мы говорили о том, что оторваться от Земли могут лишь тела, имеющие эту скорость. Значит, забравшись на большую высоту, молекулы могут потерять связь с Землей и отправиться в далекое межпланетное путешествие, но для этого надо иметь скорость 11 км/с. Доля таких быстрых молекул, как мы видим, настолько ничтожна, что опасность потери атмосферы Земле не грозит даже через миллиарды лет.

Скорость ухода атмосферы необычайно сильно зависит от гравитационной энергии γ Mm/r. Если средняя кинетическая энергия молекулы во много раз меньше гравитационной энергии, то отрыв молекул практически невозможен. На поверхности Луны гравитационная энергия в 20 раз меньше, что дает для энергии "убегания" молекулы кислорода значение 1,15*10-12 эрг. Это значение превышает величину средней кинетической энергии молекулы всего лишь в 20-25 раз. Доля молекул, способных оторваться от Луны, равна 10-17. Это уже совсем не то, что 10-300, и подсчет показывает, что воздух будет довольно быстро уходить с Луны в межпланетное пространство. Неудивительно, что на Луне нет атмосферы.

предыдущая главасодержаниеследующая глава










© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2001-2019
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://physiclib.ru/ 'Библиотека по физике'

Рейтинг@Mail.ru
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь