Новости    Библиотека    Энциклопедия    Биографии    Ссылки    Карта сайта    О сайте


предыдущая главасодержаниеследующая глава

72. Сириус увидеть нельзя

А В одном из молодежных журналов несколько лет назад при-*" водилась такая задача: "Какой телескоп нужен, чтобы с 220 км увидеть футбольный мяч диаметром 25 см?" И тут же было изложено решение:

"Невооруженным глазом мяч виден под углом


Чтобы видеть предмет, необходимо, чтобы он наблюдался под углом, не меньшим чем 1'. Значит, телескоп должен увеличивать более чем в 223 раза".

Найдите ошибку в рассуждениях. Докажите, что в приведенной форме задача вообще не может быть решена. Сформулируйте задачу заново и решите ее.

Б Вместо подсказки дадим еще одну задачу, точную копию пре-Щ дыдущей, но способную сделать очевидной ее абсурдность. Какой телескоп нужен, чтобы увидеть звезду Сириус? Расстояние до Сириуса 9,7 свет, лет (около 9*1013 км), диаметр его - полтора солнечного (около 2*106 км). Решая описанным выше "методом", получим следующее. Невооруженным глазом Сириус виден под углом


Следовательно, чтобы увидеть Сириус, нужно иметь телескоп, увеличивающий более чем в 13 000 раз. А поскольку пока что таких телескопов нет, то при современном состоянии техники увидеть Сириус нельзя. Это и есть обещанный абсурд. На самом деле Сириус виден даже невооруженным глазом. Более того, он является вообще самой яркой звездой на нашем небе (не считая Солнца).

Невооруженным глазом можно видеть звезды шестой величины, а Сириус имеет звездную величину минус 1,6, т.е. в 2,56+1,6 = 2,57,6 ≈ 1000 раз ярче звезды, находящейся на пределе невооруженного зрения*); Следовательно, чтобы увидеть Сириус, глаз не только не надо ничем вооружать, но даже можно существенно "разоружить" (например, разглядывая звезду в перевернутый бинокль). Однако днем Сириус невооруженным глазом увидеть удается, лишь когда точно знаешь, где он находится.

*) (Звезда первой величины ярче звезды шестой величины в 100 раз, т. е. разница в одну звездную ^величину соответствует отношению яркостей (100)1/5 ≈ 2,5.)

В Чтобы источник квантов был виден, нужно, чтобы число квантов света, попадающих на данный элемент сетчатки глаза, было достаточным для его возбуждения. Мы, однако, не будем вычислять число квантов, так как нам понадобилось бы много справочных данных! спектральная чувствительность зрения (различная для разных длин волн), распределение по спектру энергии освещающего мяч Солнца, распределение коэффициента отражения мяча по спектру и др. Проще найти ответ методом сравнения мяча как отражателя с небесным телом, отражающие свойства которого такие же, а расстояние и видимость общеизвестны.

Возьмем мяч диаметром d = 25 см, отражающий свет так же плохо, как и Луна, т. е. с коэффициентом отражения (альбедо), равным 0,07, причем того же цвета (с той же отражательной способностью на разных длинах волн). Обычный футбольный мяч с коричневой покрышкой - хорошая модель Луны по альбедо и по цвету. Отодвинем мяч на такое расстояние, при котором угловые размеры мяча и Луны будут одинаковы - полградуса. Расстояние до мяча будет равно l ≈ d/tg 0,5o = 0,25/0,0087 ≈ 29 м.

Если бы Луна и мяч были одинаково освещены Солнцем, то и видны наблюдателю они были бы одинаково (различием атмосферных условий пренебрегаем). Видимая звездная величина полной Луны равна (-12,7). Такова она будет и для "полного" мяча. Как далеко теперь его нужно отодвинуть, чтобы он оказался на пределе видимости невооруженным глазом, т. е. превратился в звезду шестой величины? Для этого он, как светило, должен ослабнуть на 6 + 12,7 = 18,7 звездной величины, т.е. в 2,518,7 ≈ 3*107 раз (предполагается, что наблюдения проводятся на фоне ночного неба). Количество света, попадающего в глаз, обратно пропорционально квадрату расстояния от источника, каковым сейчас является мяч. Следовательно, расстояние до мяча должно увеличиться в


А если бы мяч был белым? Ну, хотя бы как бумага (альбедо 0,8)? Он был бы виден с расстояния в раза большего, т. е. L ≈ 550 км. Это даже больше, чем требуемые в задаче 220 км, тем не менее никакого телескопа не требуется.

Заметим, однако, что если бы мяч освещался Солнцем сбоку или сзади, т. е. выглядел бы как тонкий серп, то при таком расстоянии понадобился бы телескоп, тем более сильный, чем уже этот серп.

Сфокусированный луч лазера может на небольших площадках создавать освещенности в тысячи раз большие, чем Солнце. Мяч, освещенный с Земли лучом лазера, можно увидеть невооруженным глазом за многие тысячи километров. Однако днем, на фоне ярко-голубого неба, увидеть его было бы труднее.

Итак, задача вообще не может быть решена, пока не указаны коэффициент отражения мяча, яркость фона, источник освещения и угол, под которым расположены источник света и мяч относительно наблюдателя.

Какую же ошибку в рассуждениях допустил автор задачи? Он неправильно полагает, что для того, чтобы видеть предмет, нужно, чтобы он наблюдался под углом, не меньшим чем 1'. Угловая величина Сириуса в 13 000 раз меньше, однако он хорошо виден. Угол 1' - это угловая разрешающая способность нормального зрения. Для того чтобы две светлые точки (например, два мяча в космосе) были видны раздельно, нужно, чтобы угол между ними был не менее 1'. Если он меньше 1', то обе точки в глазу проектируются на одно нервное окончание и сливаются в сознании в одну точку; если больше - то на два разных, и тогда мозг зафиксирует две точки.

При наблюдении за одним мячом угол более 1' нужен не для того, чтобы увидеть мяч, а для того, чтобы увидеть детали этого мяча (например, серповидность его освещенной части). Но это уже не задача обнаружения, а задача распознавания образов. Для этого и нужен телескоп с увеличением, большим чем в 223 раза. А для поставленной задачи имеет значение не столько большое увеличение, сколько большая светосила прибора, которая тем больше, чем больше диаметр его "входного зрачка". Можно взять телескоп с огромным увеличением и не увидеть в него ни мяч, ни Сириус, если телескоп сильно диафрагмировать, хотя диафрагмирование не меняет увеличения прибора, а только снижает его светосилу.

предыдущая главасодержаниеследующая глава










© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2001-2019
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://physiclib.ru/ 'Библиотека по физике'

Рейтинг@Mail.ru
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь